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The biochemical reactions inside single cells are inherently stochastic. They are
modelled with stochastic kinetic models governed by the chemical master equa-
tion (CME). Learning parameters of these models requires solving CME which
is rarely possible, hence we need to deploy methods to approximate its solution.
The traditional methods to infer parameters of stochastic kinetic models from
single-cell longitudinal data have generally been developed under the assumption
that experimental data is sparse. Using them on datasets with many measure-
ment time points for each cell may lead to a large computational cost.
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iterative algorithm : accurate & efficient

open loop LNA : inaccurate & efficient

CME : accurate & rarely usablea) b)
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1. What is more informative: to diversify input perturbations or not? Do we
need many cells per input or many inputs?

2. Which method to use to calculate likelihoods and infer parameters of stochas-
tic kinetic models from data sets in which each cell receives a di�erent input
perturbation?

3. Computational e�ciency of parameter inference methods: do they scale with
the number of inputs and the number of measurement times?

4. Are there approaches that are particularly well-suited for novel data sets?

Modern microscopy and new questions raised

The observed data for a single cell is given by y = {yi | i = 1, ...,M}.
The measurement model,

yi = CX(ti) + ξi, i = 1, . . . ,M,

where the ξi ∼ N (0, σ2) are independent technical measurement errors, the
matrix C maps the full system state to the measured output species.

Likelihood in terms of transition probabilities:

p (y1, . . . , yM) = p (y1) · p (y2 | y1) · · · p (yM | yM−1, . . . , y1) ,

p (yi | yi−1, . . . y1) =

∫ ∫
p (yi | xi)︸ ︷︷ ︸
tech. noise

· p (xi | xi−1)︸ ︷︷ ︸
trans. prob.

· p (xi−1 | yi−1, . . . , y1)︸ ︷︷ ︸
state posterior

dxidxi−1.

1. Calculate approximate moments, η1x1, η
2
x1
, of p(x1) by moment closure.

2. Approximate the true p(x1) by a Gaussian distribution that has η1x1, η
2
x1

as moments.

3. Marginal likelihood p(y1) =
∫
p(y1 | x1)p(x1)dx1 is Gaussian and it can be calculated from

η1x1, η
2
x1

and σ. Evaluate p(y1) and store it for the likelihood calculation.

4. The state posterior p(x1 | y1) is also a Gaussian distribution that can be calculated from
p(x1) and p(y1 | x1) thanks to Bayes' theorem, as in Kalman �ltering.

5. Extract the moments, η1x1|y1, η
2
x1|y1, of p(x1 | y1).

6. Solve moment equations over tm time units (i.e. over [t1, t2]) using η1x1|y1, η
2
x1|y1 as initial

conditions in order to obtain moments η1x2|y1, η
2
x2|y1 that approximate the moments of the

distribution p(x2 | y1).
7. Iterate: p(x2 | y1) is approximated by a Gaussian equivalently to p(x1) in the step 2. and
so forth.
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Accurate approximations: the
approximation of the CME only
needs to be accurate over the time
that passes in between subsequent
measurement steps.

∅ aA0+hA(B)−−−−−−−−→ A A
dA−−−→ ∅

∅ aB0+hB(A)−−−−−−−−→ B B
dB−−−→ ∅
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Genetic toggle switch: MCMC
algorithm generally converges very
quickly to the vicinity of the true
value of dB.

Toy models

Optogenetic system:

∅ h0−−→ E
h−−→ ∅, ∅ aE(t)L(t)−−−−−−→ F

b−−→ ∅, L(t) =
(c · l(t))n

(c · l(t))n + kn
,

dl(t)

dt
= u(t)− c · l(t),

the input light signal u(t) = 1 for green light, and u(t) = 0 for red light.

Parameters to infer: θ = {a, b, s,m, h, c, n, k}, where m := h0
h is the mean of E.
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• The quality of parameter estimates depends strongly on the group of cells
that is used for inference.

•Diversi�ed light signals in cells lead to tight posterior distributions for all
parameters and MAP estimates that are close to the true values of the
parameters.

a) b) 

a) all cells received the same light input

b) cells have received diversi�ed light inputs.

Computational e�ciency:

• The algorithm outperforms the
open loop likelihood computation
starting from a small number of
measurements.

• Linear vs exponential growth in
computational cost.

Inference of parameters from experimental data.
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Experiments parallelised at the cell scale

Reference Davidovi¢ et al. PLoS Computational Biology. 2022.


