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Goal of the talk

Goal of the talk

We will introduce the following methods:

Resultant of two polynomials.

Poincaré–Miranda Theorem.

Bendixson–Dulac Theorem.

We will also apply them to study several problems for planar polynomial
differential equations:

Number of critical points.

Non existence of periodic orbits.

Number of limit cycles.
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Resultants

Resultants

The resultant: definition.

The discriminant.

Examples of application of the resultant and the discriminant:

Casas-Alvero Conjecture.

Maximum number of critical points.

Sign of 1-parameter families of polynomials.
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Resultants

The resultant: definition

Given two polynomials a = a(x), b = b(x) ∈ C[x ], with respective degrees
∂a and ∂b we are interested to have a simple criteria to know whether they
have or not a common root (real or complex).

It is known that this property is controlled by a single computable (with a
suitable determinant) complex number called the resultant of a and b and
denoted by Resx(a, b) = Res(a, b; x).

We write n = ∂a, m = ∂b, and

a = anx
n + · · ·+ a2x

2 + a1x + a0, b = bmx
m + · · ·+ b2x

2 + b1x + b0.

We show it in next slide.
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Resultants

If n = ∂a and m = ∂b, then Resx(a, b) is the (n+m)×(n+m) determinant:

Resx(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an 0 . . . 0 bm 0 . . . 0
an−1 an . . . 0 bm−1 bm . . . 0

an−2 an−1 . . . 0 bm−2 bm−1
. . . 0

...
...

. . . 0
...

...
. . . 0

...
...

. . . 0 b1

...
. . . 0

...
...

. . . 0 b0 b1

... bm
...

. . . an 0 b0
. . . bm−1

... an−1

... 0
. . . bm−2

a0 a1 . . . an−2 0 0
. . .

0 a0
. . .

...
... 0

. . .
...

0 0
. . . a1 0 0

. . . b1

0 0 . . . a0 0 0 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
←−−−−− m −−−−−→ ←−−−−− n −−−−−→

UAB and CRM Algebraic methods for ODE 9 / 69



Resultants

The discriminant

One of the common uses of the resultant is to characterize when a polyno-
mial a(x) has a multiple root. If n = ∂a it holds:

Proposition

Define the discriminant of a ∈ C[x ] as

4x(a) = (−1)
n(n−1)

2
1

an
Resx(a, a′).

Then a has some multiple root if and only if 4x(a) = 0.

The proof is a simple consequence of the properties of the resultant and the
fact that for a polynomial a, to have a multiple root is equivalent to say
that a and a′ share some root.

The factor (−1)
n(n−1)

2
1
an

is simply for historical reasons. In particular, we

want that for a2x
2 + a1x + a0 it holds that ∆x(a) = a2

1 − 4a2a0.
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Resultants

An application: Casas-Alvero Conjecture

Problem

The Casas-Alvero conjecture affirms that if a complex polynomial P of
degree n > 1 shares roots with all its derivatives, P(k), k = 1, 2 . . . , n − 1,
then there exist two complex numbers, a and b 6= 0, such that
P(z) = b(z − a)n.

Notice that, in principle, the common root between P and each P(k) might
depend on k .

Casas-Alvero arrived to this problem at the turn of this century, when he
was working trying to obtain an irreducibility criterion for two variable power
series with complex coefficients.

Although several authors have got partial answers, to the best of our kno-
wledge the conjecture remains open.
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Resultants

Casas-Alvero Conjecture-II

For n ≤ 4 we will prove it by using resultants.

In 2006 it was proved by using Maple, that it is true for n ≤ 8.

Afterwards, it was proved that it holds when n is pm, 2pm, 3pm or
4pm, for some prime numbers p and m ∈ N.

The first cases left open are those where n = 24, 28 or 30.

A good reference:

J. Draisma, J. P. de Jong. On the Casas-Alvero conjecture. Eur.
Math. Soc. Newsl. 80 (2011), 29–33.
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Resultants

Casas-Alvero Conjecture: proof for n = 4

Write P(x) = x4 + bx3 + cx2 + dx + e. The conditions of the conjecture
can be algebraically written as:

C1 = Resx(P,P ′) = 0, C2 = Resx(P,P ′′) = 0, C3 = Resx(P,P ′′′) = 0.

It holds that

C1 =− 27 b4e2 + 18 b3cde − 4 b3d3 − 4 b2c3e + b2c2d2 + 144 b2ce2

− 6 b2d2e − 80 bc2de + 18 bcd3 + 16 c4e − 4 c3d2 − 192 bde2

− 128 c2e2 + 144 cd2e − 27 d4 + 256 e3,

C2 =− 1296 b4e + 432 b3cd − 96 b2c3 + 6912 b2ce − 2016 bc2d + 400 c4

− 10368 bde − 5760 c2e + 3456 cd2 + 20736 e2,

C3 = −3888 b4 + 20736 b2c − 82944 bd + 331776 e.

From C3 = 0 we get that e = E :=
3

256
b4 − 1

16
b2c +

1

4
bd .
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Resultants

Casas-Alvero Conjecture: proof for n = 4

We have to solve

D1 := C1

∣∣
e=E

= 0 D2 := C2

∣∣
e=E

= 0.

With some more computations we get

Resc(D1,D2) = − 113927664375

17592186044416

(
b3 − 16 d

)16
,

Resd(D1,D2) =
22325625

4294967296

(
3 b2 − 8 c

)16
.

Hence

c =
3

8
b2, d =

1

16
b3 and

e =
3

256
b4 − 1

16
b2c +

1

4
bd =

1

256
b4,

and, finally,

P(x) =

(
b

4
+ x

)4

.
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Maximum number of critical points of a system. Part 1

Critical points of a polynomial system: an example

The critical points of the polynomial ODE, ẋ = P(x , y), ẏ = Q(x , y),
coincide with number of real solutions of{

P(x , y) = 43x6 + 61y3 − 43y = 0,
Q(x , y) = 43y6 + 61x3 − 43x = 0.

From the properties of the resultant we know that each of the solutions is
also a solutions of the following system, where notice that each of the new
equations depends only on 1 variable.

{
U(x) = Resy (P(x , y),Q(x , y)) = (43x6 + 61x3 − 43x)R30(x) = 0,
U(y) = Resx(P(x , y),Q(x , y)) = (43y6 + 61y3 − 43y)R30(y) = 0, where

R30(x) =11688200277601 x30 − 16580935277527 x27 + 11688200277601 x25 + 23521791905329 x24 − 33161870555054 x22

+ 66736246801166 x21 + 11688200277601 x20 − 94672350113282 x18 − 49742805832581 x17 + 66736246801166 x16

+ 145990836484815 x15 + 70565375715987 x14 − 189344700226564 x13 + 28937431083381 x12 − 33368123400583 x11

+ 11688200277601 x10 − 111616150043574 x9 + 111842107471016 x7 + 124971066196115 x6 + 11688200277601 x5

− 270275883897806 x4 + 94672350113282 x3 + 95261172193489 x2 − 66736246801166 x + 11688200277601.
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Maximum number of critical points of a system. Part 1

Number of critical points of a planar system

By using for instance Sturm sequences it can be proved that U(x) has
exactly 6 real solutions:

x0 = 0 < x1 ≈ 0.597 < x2 ≈ 0.689 < x3 ≈ 0.7403 < x4 ≈ 0.780 < x5 ≈ 0.816.

As a consequence we obtain that the initial system has at most 6 × 6 real
solution and that the candidates to be a solution are (x , y) = (xi , xj) varying
i and j between 0 and 5.

Moreover, for each j = 1, . . . , 5 and any ε > 0, it is possible to find x j , x j
such that

x j < xj < x j , with x j , x j ∈ Q, and |x j − x j | < ε.

For instance

x1 =
59

100
< x1 <

3

5
= x1, and x3 =

74

100
< x3 <

3

4
= x3.
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Maximum number of critical points of a system. Part 1

Number of critical points of a planar system

Some of the couples (xi , xj) are actual solutions of our initial system and
some others are not.
Let us prove that (x1, x3) is not a solution. Recall that

x1 =
59

100
< x1 <

3

5
= x1, and x3 =

74

100
< x3 <

3

4
= x3.

We will prove that P(x1, x3) = 43x6
1 + 61x3

3 − 43x3 6= 0.

From the above inequalities get

P(x1, x3) = 43x6
1 + 61x3

3 − 43x3 < 43x6
1 + 61x3

3 − 43x3

= 43

(
3

5

)6

+ 61

(
3

4

)3

− 43

(
74

100

)
= −4079417

1000000
< 0,

as we wanted to see.

Hence we have discarded this possibility.
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Maximum number of critical points of a system. Part 1

Number of critical points of a planar system

Doing similar computations we get that apart from (x , y) = (0, 0) which is
trivially a solution of the initial systems, there are only 5 more candidates
to be real solutions of: {

43x6 + 61y3 − 43y = 0,
43y6 + 61x3 − 43x = 0.

They are:
(x1, x5), (x2, x4), (x3, x3), (x4, x2), (x5, x1).

We need a different tool to ensure that they are actual solutions.
This will be proved by using a new tool, the so called Poincaré-Miranda
theorem.
We will recall it in next slides.
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Poincaré–Miranda Theorem

Poincaré–Miranda Theorem

The Poincaré–Miranda Theorem is an extension of the classical Intermediate
Value Theorem (or Bolzano’s Theorem) to higher dimensions.

It was stated by H. Poincaré in 1883 and 1884, and proved by himself in
1886. In 1940, C. Miranda re-obtained the result as an equivalent formula-
tion of Brouwer fixed point theorem:

C. Miranda, Un’osservazione su un teorema di Brouwer, Boll. Un.
Mat. Ital. (2) 3, (1940). 5–7.

In

A. Gasull, V. Mañosa. Periodic orbits of discrete and continuous
dynamical systems via Poincaré–Miranda theorem. Discrete Contin.
Dyn. Syst. Ser. B, 25(2), 651-670. 2020.

we apply it to different problems of dynamical systems (discrete or continu-
ous) to prove the existence of some periodic orbits.
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Poincaré–Miranda Theorem

Poincaré–Miranda Theorem

Theorem (Poincaré–Miranda)

Set B = {x = (x1, . . . , xn) ∈ Rn : Li < xi < Ui , 1 ≤ i ≤ n}. Suppose that
f = (f1, f2, . . . , fn) : B→ Rn is continuous, f (x) 6= 0 for all x ∈ ∂B, and
for 1 ≤ i ≤ n,

fi (x1, . . . , xi−1, Li , xi+1, . . . , xn) ≤ 0 and

fi (x1, . . . , xi−1,Ui , xi+1, . . . , xn) ≥ 0,

Then, there exists s ∈ B such that f (s) = 0.
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Poincaré–Miranda Theorem

Poincaré–Miranda Theorem in the plane

f1(x , y) = 0

f2(x , y) = 0

f1 < 0 f1 > 0

f2 < 0

f2 > 0

Figure: A Poincaré–Miranda box.
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Number of critical points of a system. Part 2

Kouchnirenko’s conjecture

As we will see, the computation of the number of critical points of system{
ẋ = 43x6 + 61y3 − 43y ,
ẏ = 43y6 + 61x3 − 43x ,

that we started to study before is very related with the so called Kouchni-
renko’s conjecture.

Descartes’ rule asserts that an 1-variable real polynomial with m monomials
has at most m − 1 simple positive real roots.

The Kouchnirenko’s conjecture was posed to try to extend this rule to the
several variables context. In the 2-variables case this conjecture said that:

A real polynomial system f1(x , y) = f2(x , y) = 0 would have at
most (m1− 1)(m2− 1) simple solutions with positive coordinates,
where mi is the number of monomials of each fi .

This conjecture was stated by A. Kouchnirenko in the late 70’s, and publis-
hed in the a A. G. Khovanskĭı’s paper in 1980.
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Number of critical points of a system. Part 2

Counterexamples to Kouchnirenko’s conjecture

In 2000, B. Haas constructed a family of counterexamples given by two
trimonomials, being their minimal degree 106.

In 2007 a much simpler family of counterexamples was presented by A. Dic-
kenstein, J. M. Rojas, K. Rusek, J. Shih. The simplest one again formed
by two trimonomials, but of degree 6.

Both have exactly 5 simple solutions with positive coordinates instead of
the 4 predicted by the conjecture.

We give a similar counterexample by using PMT.

Proposition

The bivariate trinomial system{
P(x , y) := x6 + 61

43y
3 − y = 0,

Q(x , y) := y6 + 61
43x

3 − x = 0,

has 5 real simple solutions with positive entries.
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Number of critical points of a system. Part 2

Previous proved result

Notice that if P and Q are as in the previous proposition, we have already
studied the solutions of the system

43P(x , y) = 0, 43Q(x , y) = 0,

that is, {
43x6 + 61y3 − 43y = 0,
43y6 + 61x3 − 43x = 0.

Recall that we have already proved that apart from (x , y) = (0, 0) which is
trivially a solution, there are only 5 more candidates to be real solutions:

(x1, x5), (x2, x4), (x3, x3), (x4, x2), (x5, x1),

for the previously given values.

Let us prove that they are indeed actual solutions by using Poincaré-Miranda
theorem.
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Number of critical points of a system. Part 2

Proof of the proposition

It is not difficult to find numerically these 5 approximated solutions of the
system. They are (x̃1, x̃5), (x̃2, x̃4), (x̃3, x̃3), (x̃4, x̃2), (x̃5, x̃1), where x̃1 =
0.59679166, x̃2 = 0.68913517, x̃3 = 0.74035310, x̃4 = 0.77980435 and
x̃5 = 0.81602099.

We consider the following 5 intervals, with x̃i ∈ Ii ,

I1 =

[
1

2
,

1619

2500

]
, I2 =

[
1619

2500
,

18

25

]
, I3 =

[
18

25
,

75857

100000

]
,

I4 =

[
75857

100000
,

4

5

]
, I5 =

[
4

5
,

83

100

]
and prove that our system has 5 actual solutions (x1, x5), (x2, x4), (x3, x3),
(x4, x2), (x5, x1), with xi ∈ Ii .
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Number of critical points of a system. Part 2

Proof of the proposition

By Descartes’ rule we know that there is exactly one simple positive real
root of P(x , x). The corresponding (x3, x3) is in in I3 × I3.

By the symmetry of the system, if (x∗, y∗) is one of its solutions then (y∗, x∗)
also is.

We will prove the existence of two more solutions (and so, their symmetric
ones) by using PMT.
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Number of critical points of a system. Part 2

Proof of the proposition

Figure: Intersection the curves defining the system. In red, the PM boxes I1 × I5
and I2 × I4
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Number of critical points of a system. Part 2

Proof of the proposition

We apply the PMT to the box I1 × I5 =
[

1
2 ,

1619
2500

]
×
[

4
5 ,

83
100

]
.

Consider the polynomials

P

(
1

2
, y

)
=

61

43
y3 − y +

1

26

and

P

(
1619

2500
, y

)
=

61

43
y3 − y +

(
1619

2500

)6

.

By computing their corresponding Sturm sequences we get that both have no
roots in [4/5, 83/100]. Moreover P(1/2, y) < 0 and P(1619/2500, y) > 0
on this interval.
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Number of critical points of a system. Part 2

Proof of the proposition

Similarly we get that

Q

(
x ,

4

5

)
=

61

43
x3 − x +

(
4

5

)6

< 0

and

Q

(
x ,

83

100

)
=

61

43
x3 − x +

(
83

100

)6

> 0

on [1/2, 1619/2500].

Hence, I1 × I5 is under the hypotheses of the PMT, and our system has a
solution (x1, x5) in this box.
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Number of critical points of a system. Part 2

Proof of the proposition

To prove that the 5 solutions are simple we compute

J(x , y) := detD(P,Q) = 36x5y5 − 33489

1849
x2y2 +

183

43
x2 +

183

43
y2 − 1.

Since Res(Res(P,Q; x),Res(P, J; x); y) 6= 0, J does not vanish on the
solutions (real or complex) of our system. Hence all their solutions are
simple.

In fact, by joining the above result with the results proved in the previous
lesson, we know that 5 is the exact number of solutions with positive entries
and that these solutions together with (0, 0) are the only critical points of
the polynomial ODE: {

ẋ = 43x6 + 61y3 − 43y ,
ẏ = 43y6 + 61x3 − 43x .
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Number of critical points of a system. Part 2

Some open questions

In 2003, Li, Rojas and Wang proved that any bivariate trinomial system
m1 = m2 = 3 has at most 5 real simple solutions with positive entries.
These results have been tried to be extended for m1 = 3 and m2 arbitrary.
In general:

Problem

Find a reasonable (or sharp) upper bound in terms of mi for the maximum
number of simple solutions with positive coordinates, for a real polynomial
system f1(x , y) = f2(x , y) = 0, where mi is the number of monomials of
each fi .

Not sharp upper bounds are known from the works of Khovanskĭı.
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Number of critical points of a system. Part 2

Some open questions

Recall again that by using Descartes’ rule it is easy to answer this last
problem in one variable. Moreover, the m − 1 corresponding to positive
solutions goes to a global 2m−1: m−1 positive roots, m−1 negative and,
eventually, the root 0, that can be multiple, with any multiplicity.

It is natural to wonder if the following modified Kouchnirenko’s bound works.

Problem

Is (2m1 − 1)(2m2 − 1) the maximum number of simple solutions of a real
polynomial system f1(x , y) = f2(x , y) = 0, where mi is the number of
monomials of each fi?

Of course there is a natural extension to several variables of the above
bound.

UAB and CRM Algebraic methods for ODE 35 / 69



Number of critical points of a system. Part 2

Examples with (2m1 − 1)(2m2 − 1) simple solutions

It is very easy to find examples of uncoupled systems having
(2m1 − 1)(2m2 − 1) simple solutions.

For instance, for m1 = m2 = 3, then (2m1 − 1)(2m2 − 1) = 25. Consider
(x2 − 1)(x2 − 4)x = x5 − 5x3 − x . Then the system{

x5 − 5x3 − x = 0,
y5 − 5y3 − y = 0,

has the 25 simple solutions (xi , xj) with xi , xj ∈ {−2,−1, 0, 1, 2}. The sy-
stem {

x5+r − 5x3+r − x1+r = 0,
y5+s − 5y3+s − y1+s = 0, s > 0, r > 0,

has 16 simple solutions and 9 multiple ones.
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Number of critical points of a system. Part 2

An example with (2m1 − 1)(2m2 − 1) solutions, but one
non-simple

Another example with 25 solutions can be constructed from our counterex-
ample: {

x6 + 61
43y

3 − y = 0,
y6 + 61

43x
3 − x = 0.

Taking x → x2 and y → y2 we consider:{ (
x12 + 61

43y
6 − y2

)
y = x12y + 61

43y
7 − y3 = 0,(

y12 + 61
43x

6 − x2
)
x = y12x + 61

43x
7 − x3 = 0,

which has 4 × 5 = 20 solutions, 5 in each quadrant, plus 5 more on the
axis: (0, 0), (±x∗, 0), (0,±y∗), for some x∗ and y∗. Again 25 solutions, but
here (0, 0) is not a simple solution.
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Bendixson–Dulac Theorem

Bendixson–Dulac theorem

Recall the version of the Bendixson—Dulac theorem for multiply connected
regions:

Theorem

Consider a C1 planar differential system

ẋ = P(x , y), ẏ = Q(x , y),

defined on U ⊂ R2, an open connected subset such that R2 \ U has
` = `(U) bounded components, and denote by X = (P,Q) its associated
vector field. Let B : U→ R be a C1 function such that

div(BX ) = (BP)x + (BQ)y

does not change sign and vanishes only on a null measure set. Then, the
system has at most ` limit cycles in U.
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Bendixson–Dulac Theorem

Bendixson–Dulac theorem in pictures

In a few words, from Bendixson-Dulac theorem we obtain the maximum
number of limit cycles in U when the divergence does not change sign on
U, according the shape of the set U.

No limit cycles 2 limit cycles 3 limit cycles
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Bendixson–Dulac theorem. Definition of L(V )

Given an open connected subset U ⊂ R2, with finitely many holes, we have
denoted by ` = `(U) this number of holes, that is, the number of bounded
components of R2 \U. Notice that if U is simply connected then `(U) = 0.

Definition

Given a function V : R2 → R of class C1 we will say that it is admissible
if:

(i) The vector ∇V vanishes on {V (x , y) = 0} at finitely many points.

(ii) The set {V (x , y) = 0} has finitely many connected components.

(iii) The set R2 \ {V (x , y) = 0} has j connected components,
Ui , i = 1, 2, . . . , j , and for all of them `(Ui ) <∞.

Associated to V , we define the non negative integer number

L(V ) :=

j∑
i=1

`(Ui ).
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Bendixson–Dulac theorem

Theorem (A version of Bendixson–Dulac theorem)

Consider a C1 planar differential system

ẋ = P(x , y), ẏ = Q(x , y),

and denote by X = (P,Q) its associated vector field. Let V : R2 → R be
an admissible function such that there exists s ∈ R+ for which the function

Ms := Ms,V =
∂V

∂x
P +

∂V

∂y
Q − s

(
∂P

∂x
+

∂Q

∂y

)
V

does not change sign and vanishes only on a null measure set, not
invariant by the flow of X . Then the system has at most
LX (V ) := N + L(V ) limit cycles, where N is the number of periodic orbits
of X contained in the set V = {V (x , y) = 0} and L(V ) the introduced
computable number that depends on the shape of the set {V (x , y) = 0}.
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Bendixson–Dulac theorem, 2nd version. Idea of the proof

In a few words we apply the classical Bendixson–Dulac theorem with B =
|V |−1/s to each of the connected components of R2 \ {V (x , y) = 0}. The
key points are:

The formula:

div
(
|V |−1/sX

)
= −1

s
sign(V )|V |−1/s−1Ms

where

Ms = Ms,V =
∂V

∂x
P +

∂V

∂y
Q − s

(
∂P

∂x
+

∂Q

∂y

)
V .

The fact that

Ms

∣∣∣
V=0

=
∂V

∂x
P +

∂V

∂y
Q

does not change sign implies that the periodic orbits of the system
not contained in {V (x , y) = 0} can not cut this set.
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A key point in BD Theorem: control of the sign of a
function

In next two situations the sign of a function gives dynamical properties of a
phase portrait of a planar differential equation

ẋ = P(x , y), ẏ = Q(x , y).

Lyapunov approach: W : R2 −→ R such that

Ẇ = WxP + WyQ does not change sign implies no periodic orbits

Bendixson-Dulac approach: B : R2 −→ R such that

div(BP,BQ) = Ḃ+div(P,Q)B does not change sign controls the p.o.

SIGN OF A FUNCTION =⇒ NUM. OF PERIODIC ORBITS
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Bendixson–Dulac Theorem

Aleksandr M. Lyapunov (1857-1919)

Ivar Bendixson (1861-1935) Henri Dulac (1870-1955)
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Bendixson–Dulac Theorem

An example: fixed sign of 1-parameter families of
polynomials

Lemma

Let
Gb(x) = gn(b)xn + gn−1(b)xn−1 + · · ·+ g1(b)x + g0(b),

be a family of real polynomials depending also polynomially on a real
parameter b. Suppose that there exists an open interval I ⊂ R such that:

(i) There is some b0 ∈ I , such that Gb0(x) > 0 on R.

(ii) For all b ∈ I , 4x(Gb) 6= 0.

(iii) For all b ∈ I , gn(b) 6= 0.

Then for all b ∈ I , Gb(x) > 0 on R.
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Proof of the lemma

Gb(x) = gn(b)xn + gn−1(b)xn−1 + · · ·+ g1(b)x + g0(b).

The key point of the proof is that the roots (real and complex) of Gb depend
continuously of b, because gn(b) 6= 0. Moreover:

Hypothesis gn(b) 6= 0 prevents that moving b some root appears from
infinity.

On the other hand if moving b some new real roots appear from C,
they do appear trough a multiple real root that is detected by the
vanishing of 4x(Gb). Since by hypothesis (ii), 4x(Gb) 6= 0 no real
root appears in this way.

Hence, for all b ∈ I , the number of real roots of any Gb is the same.
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Number of limit cycles: examples
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Number of limit cycles: examples

Non existence of limit cycles

We study the non existence of periodic orbits of the celebrated Higgins–
Selkov system. Recall that it is a model of glicolysis and it is{

ẋ = 1− xy2,

ẏ = ay(xy − 1),

where a is a real positive parameter. In
J. C. Artés, J. Llibre and C. Valls, Dynamics of the
Higgins-Selkov and Selkov systems. Chaos Solitons Fractals 114,
(2018) 145–150.

it is addressed the following conjecture: For a ∈ R, the above system has
limit cycles only when a ∈ (1, a∗) and a∗ ∈ (1.23, 1.24). This conjecture is
supported by several analytic and numerical results presented in that paper.

In particular, the authors prove that for a ∈ (−∞, 0] ∪ [3,∞) the system
does not have limit cycles. We will extend the region of non existence of
limit cycles.

UAB and CRM Algebraic methods for ODE 49 / 69



Number of limit cycles: examples

Non existence of limit cycle for Higgins–Selkov system

We will prove next result, by using the Bendixson–Dulac approach.

Theorem

The Higgins–Selkov system{
ẋ = 1− xy2,

ẏ = ay(xy − 1),

does not have limit cycles for a ∈ (∞, 1] ∪ [5/4,∞)

Recall that the conjectured region without limit cycles is a ∈ (∞, 1]∪[a∗,∞)
with a∗ ∈ (1.23, 1.24).

With the same method and much more involved computations we can prove
that the system does not have limit cycles when

a ∈ (∞, 1] ∪ [1.23907,∞).
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Proof of non existence of limit cycle for HS system

The periodic orbits of the HS system{
ẋ = 1− xy2,

ẏ = ay(xy − 1),

must be contained in the first quadrant Q = {x > 0 and y > 0}.
For convenience, in Q, we take the new variables u = xy and v = y , where
for the sake of simplicity, we keep the old names for the variables,{

ẋ = y + ax(x − 1)− xy2 =: P(x , y),

ẏ = ay(x − 1) =: Q(x , y),

Next, we will choose suitable different V ′s in Bendixson–Dulac Theorem
such that the corresponding M1,

M1 =
∂V

∂x
P +

∂V

∂y
Q −

(
∂P

∂x
+

∂Q

∂y

)
V .

does not change sign on Q.
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Non existence of limit cycle for HS system. Case a ≤ 0.

By taking

V (x , y) = y3, some computations give that M1(x , y) = y3(y2−a).

Note that:

The set V = {V (x , y) = 0} = {y = 0}, does not contain periodic
orbits of system,

All the connected components of R2 \ V are simply connected,

When a ≤ 0 the function M1 does not change sign on Q.

Hence, by applying the Bendixson–Dulac Theorem:

For a ≤ 0 the Higgins–Selkov system does not have periodic orbits.
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Non existence of limit cycle for HS system. Case
0 ≤ a ≤ 1.

By taking

V (x , y) = y2
(
y + 2a(x − 1)

)
, some computations give that

M1(x , y) = y3
(
(y − a)2+a(1− a)

)
.

Note that:

The set V = {V (x , y) = 0} does not contain periodic orbits of
system,

All the connected components of R2 \ V are simply connected,

When 0 ≤ a ≤ 1 the function M1 does not change sign on Q.

Hence, by applying the Bendixson–Dulac Theorem:

For 0 ≤ a ≤ 1 the Higgins–Selkov system does not have periodic orbits.
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Non existence of limit cycle for HS system. Case a ≥ 5/4.

By taking

V (x , y) = y
(
v(x)− 4xy

)
, with v(x) = (k + 5)

(
1− (k + 1)x

)
, and

writing a = (k + 5)(k + 1)2/4, then some computations give that

M1(x , y) =
k + 1

4

((
2y − v(x)

)2
+k(k + 5)2

)
.

Note that:

The set V = {V (x , y) = 0} does not contain periodic orbits of
system,
All the connected components of R2 \ V are simply connected,
When a ≥ 5/4 it is easy to see that there exists k ≥ 0 such that
a = (k + 5)(k + 1)2/4. In particular, for a = 5/4, k = 0. Thus, when
a ≥ 5/4 the function M1 does not change sign on Q.

Hence, by applying the Bendixson–Dulac Theorem:

For a ≥ 5/4 the Higgins–Selkov system does not have periodic orbits.
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More about the case a ≥ 5/4.

In this case it has been a key point to write

a =
(k + 5)(k + 1)2

4
.

This type of tricks, that are performed to avoid square roots and cumbers-
ome expressions, can be applied to several problems in dynamical systems
and are explained and developed with more detail in:

A. Gasull, T. Lázaro and J. Torregrosa, Rational parameterizations
approach for solving equations in some dynamical systems problems.
Qual. Theory Dyn. Syst. 18, (2019) 583–602.
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Non existence of limit cycle for HS system. How to find V ?

The main ideas follow from the methods developed in the papers

A. Gasull and H. Giacomini. Some applications of the extended
Bendixson–Dulac theorem. In Progress and challenges in dynamical
systems, vol. 54 of Springer Proc. Math. Stat. Springer, Heidelberg,
2013, pp. 233–252.
A. Gasull and H. Giacomini. Effectiveness of the Bendixon-Dulac
theorem, J. Differ. Equations 305, (2021) 347–367.

In this case, it consists on considering V (x , y) = ymP2(x , y), where the
factor y appears because y = 0 is an invariant curve of the system, P2 is
second degree polynomials with free coefficients, and s > 0 and m are also
free parameters. Then all these parameters are determined by imposing that
Ms has some special shape that makes affordable to impose that it keeps
sign on Q.
Usually, the computation of several resultants or discriminants is one the
more used tools to control the signs of the functions Ms .
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Non existence of limit cycle for HS system. A final
improvement

Until now we have proved non existence of periodic orbits for a ≥ 5/4 =
1.25. To improve this result, showing that the same holds for

a ≥ 1.23907

we really need much more computations.

We have achieved this result by searching for more complicated functions V .
More concretely, we have considered functions of the form

V (x , y) = ymP2(x , y) exp

(
Q2(x , y)

y

)
,

that also contain an exponential factor of the system.
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Uniqueness of limit cycle for HS system

We are now working on proving the existence and uniqueness of the li-
mit cycle for the Higgins–Steklov system when b ∈ (0, b∗], by using also
Bendixson–Dulac Theorem.
This result has been already proved in

H. Chen and Y. Tang, Proof of Artés–Llibre-Valls’s conjectures for
the Higgins–Selkov and the Selkov systems. J. Differ. Equations
266, (2019) 7638–7657.

by transforming the system into a Liénard equation.

In next slides we present another system for which Bendixson–Dulac Theo-
rem gives effective criteria for controlling the number of limit cycles.
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Number of limit cycles

We give, under some testable conditions, an upper bound of the number of
limit cycles for system system{

ẋ = af (x) + by ,

ẏ = cf (x) + dy ,

where a, b, c , d are real parameter, f is smooth and f (0) = 0.
In particular we prove

Consider system {
ẋ = ax2n−1 + by ,

ẏ = cx2n−1 + dy ,

where n > 1 is an integer. It has at most one limit cycle and, when it
exists, it is hyperbolic. Moreover, it exists if and only if ad − bc > 0 and
ad < 0 and its stability is given by the sign of −d .

UAB and CRM Algebraic methods for ODE 59 / 69



Number of limit cycles: examples

Number of limit cycles

Theorem

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

where f is smooth and f (0) = 0. Assume that

R(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points, where F ′ = f and
F (0) = 0. Let K be the number of bounded intervals (counting also
intervals degenerated to a point as intervals) of the closed set

{x ∈ R : ∆(x) = (af (x) + dx)2 − 8(ad − bc)F (x) ≥ 0}.

Then the system has at most K limit cycles, all of them hyperbolic.
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Idea of the proof:

We apply Bendixson–Dulac Theorem with s = 1, that is

M(x , y) = M1(x , y) = VxP + VyQ − div(P,Q).

with the idea idea of searching for a function

V (x , y) = y2 + v(x)y + w(x),

for some v and w , such that when we compute M with (P,Q) = (af (x) +
by , cf (x) + dy), we obtain that M depends only on x .
Some computations give that

M(x , y) =
(
d + bv ′(x)− af ′(x)

)
y2

+
(
af (x)v ′(x) + bw ′(x) + 2cf (x)− af ′(x)v(x)

)
y

af (x)w ′(x) + cf (x)v(x)− af ′(x)w(x)− dw(x).
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Idea of the proof:

M(x , y) =
(
d + bv ′(x)− af ′(x)

)
y2

+
(
af (x)v ′(x) + bw ′(x) + 2cf (x)− af ′(x)v(x)

)
y

af (x)w ′(x) + cf (x)v(x)− af ′(x)w(x)− dw(x).

Hence, to achieve our goal, we can choose v and w as any solution of the
differential equations obtained by equating the coefficients of M of y and
y2 to zero. More concretely, we take

v(x) =
a

b
f (x)− d

b
x , w(x) =

2(ad − bc)

b2
F (x)− ad

b2
xf (x).

Then

M(x , y) =
(bc − ad)

b2
R(x),

where recall that, by hypothesis, R does not change sign and vanishes only
at isolated points.
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Idea of the proof:

In short we have found v and w such that by taking

V (x , y) = y2 + v(x)y + w(x),

div
(P(x , y)

V (x , y)
,
Q(x , y)

V (x , y)

)
=

R(x , y)

V 2(x , y)
=

(bc − ad)

b2

R(x)

V 2(x , y)
.

When R does not change sign and vanishes at isolated points we can apply
Bendixson-Dulac Theorem. We know that:

The limit cycles do not cut the set {V (x , y) = 0},
the maximum number of limit cycles is given by the number of holes
of R2 \ {V (x , y) = 0}.

Since V is quadratic on y , the shape of V (x , y) = 0 can be easily studied.
This number is controlled by the number of intervals of the discriminant of
V (x , y) with respect to y , that is the ∆(x) of the statement.
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Idea of the proof:

In red, an example of set {V (x , y) = 0}, for which K = 5, corresponding
to (a, b, c , d) = (−1,−1,−1, 1) and f (x) = T11(x), the 11-th Chebyshev
polynomial.
The blue curve is simply the plot of the symmetry curve of V (x , y) = 0 that
also writes as

y =
dx − af (x)±

√
∆(x)

2b
.
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Uniqueness of the limit cycle

Corollary

Consider system

ẋ = af (x) + by , ẏ = cf (x) + dy ,

and assume that

R(x) = 2af ′(x)F (x)− a(f (x))2 − dxf (x) + 2dF (x)

does not change sign and vanishes at isolated points. Assume also that
the origin is the only equilibrium point of the system. Then it has at most
one limit cycle, and when it exists, it is hyperbolic.

In this case, the uniqueness of the critical point implies that R2\{V (x , y) =
0} has at most 1 hole.
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Uniqueness of the limit cycle

Corollary

Consider system

ẋ = ax2n−1 + by , ẏ = cx2n−1 + dy ,

where n > 1 is an integer. It has at most one limit cycle and, when it
exists, it is hyperbolic. Moreover, it exists if and only if ad − bc > 0 and
ad < 0 and its stability is given by the sign of −d .
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Idea of the proof:

For this system:

When ad > 0, it does not have periodic orbits. This follows from the
classical Dulac criterion because the divergence of the vector field is
(2n − 1)ax2(n−1) + d and does not change sign.

Case ad < 0. Then

R(x) =
(n − 1)

n
x2n(ax2(n−1) − d)

and hence this function does not change sign. Finally we need to
compute the number K of bounded intervals where ∆(x) ≥ 0. In this
case

∆(x) = x2
(a2

b2
x8(n−1) +

(4n − 6)ad + 4bc

(2n − 1)b2
x4(n−1) +

d2

b2

)
,

and it is not difficult to prove that K = 1 and the uniqueness of the
limit cycle follows
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Idea of the proof:

The shape of {V (x , y) = 0} is illustrated in next figure when (a, b, c , d) =
(1,−1,−1.05,−1). In all cases the proof of uniqueness of the limit cycle is
similar.
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Research Centers cups collection in my office

Thank you very much for your attention
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