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Dynamics of chemical reaction networks

Global Attractor Conjecture: Trajectories of complex balanced CRNs are globally
attracted to positive equilibria in each compatibility class.

Many partial results (Craciun, Dickenstein, Shiu, Sturmfels ’09; Anderson ’11; An-
geli, de Leenheer, Sontag ’11; Craciun, Nazarov, Pantea ’13; Gopalkrishnan, Miller,
Shiu ’14; Balázs, Hopfbauer ’22) and a potential full proof (Craciun ’15).

These results

deal with the setting of ODEs

provide qualitative convergence towards equilibrium

Our goals are to

study mass action systems in PDE setting

obtain quantitative convergence to equilibrium.
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A specific reaction network...
We consider the following reaction network

The corresponding mass-action reaction-diffusion system reads as
∂tu1 − d1∆u1 = −k1u1 + k3u

3
2

∂tu2 − d2∆u2 = 2k1u1 + k2u
2
2u3 − 3k3u

3
2

∂tu3 − d3∆u3 = k1u1 − k2u
2
2u3

s.t.

{
∇ui · ν = 0, x ∈ ∂Ω

ui (x , 0) = ui,0(x), x ∈ Ω

The system has one conservation law of total mass∫
Ω

(u1(x , t) + u2(x , t) + u3(x , t)) = M :=

∫
Ω

(u1,0(x) + u2,0(x) + u3,0(x)), ∀t > 0.
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A specific reaction network...

The reaction network is complex balanced.

Lemma

For M > 0, there exists a unique positive equilibrium u∞ ∈ (0,∞)3 and one
boundary equilibrium u∗ = (0, 0,M).

In the ODE setting: the positive equilibrium u∞ is globally attracting, see [Anderson
’11, Gopalkrishnan & Miller & Shiu ’14, Balázs & Hopfbauer ’22]. These proofs
are essentially geometrical and seem difficult to extend to the PDE setting!

This talk: We approach this problem by entropy method.
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Relative entropy & Entropy dissipation
For the relative entropy

E (u|u∞) =
3∑

i=1

∫
Ω

(
ui ln

ui
ui,∞

− ui + ui,∞

)
dx

we know that
d

dt
E (u(t)|u∞) ≤ 0, ∀t ≥ 0.

Moreover, we have the entropy dissipation

D(u) = − d

dt
E (u|u∞)

=
3∑

i=1

di

∫
Ω

|∇ui |2

ui
dx +

∫
Ω

[
k1Ψ

(
u1

u1,∞
;

u22u3
u22,∞u3,∞

)

+ k2Ψ

(
u22u3

u22,∞u3,∞
;

u32
u32,∞

)
+ k3Ψ

(
u32
u32,∞

;
u1

u1,∞

)]
dx

where Ψ(x ; y) = x ln(x/y)− x + y ≥ 0.
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Explicit form of entropy dissipation

Entropy dissipation contains all reactions

D(u) = − d

dt
E (u|u∞)

=
3∑

i=1

di
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Ω

|∇ui |2

ui
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Ω
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u1
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u22u3
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u22u3
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Entropy method
If we have an entropy-entropy dissipation inequality

D(u) ≥ λE (u|u∞)

then
d

dt
E (u|u∞) = −D(u) ≤ −λE (u|u∞)

and Gronwall’s lemma gives

E (u(t)|u∞) ≤ e−λtE (u(0)|u∞).

With an inequality of Csiszár-Kullback-Pinsker type

E (u|u∞) ≥ CCKP

3∑
i=1

∥ui − ui,∞∥2L1(Ω)

we obtain exponential convergence to equilibrium with rate λ/2

3∑
i=1

∥ui (t)− ui,∞∥2L1(Ω) ≤ C−1
CKPE (u(0)|u∞)e−λt .

In case of no boundary equilibria, the exponential convergence to equilibrium is well
proven! (Desvillettes, Fellner, T. SIAM 2017; Fellner, T. ZAMP 2018)
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The problem of boundary equilibria...

In this case, the inequality

D(u) ≥ λE (u|u∞)

is unfortunately not true as a functional inequality, because (u∗ = (0, 0,M))

lim
u→u∗

D(u) = 0 but lim inf
u→u∗

E (u|u∞) > 0.

We first estimate D(u) using Ψ(x , y) ≥ (
√
x −√

y)2

D(u) ≳
3∑

i=1

∫
Ω

|∇ui |2

ui
dx +

∫
Ω

[√
u1

u1,∞
− u2

u2,∞

√
u3

u3,∞

]2
dx

+

∫
Ω

u22
u22,∞

[√
u3

u3,∞
−
√

u2
u2,∞

]2
dx +

∫
Ω

[
u2

u2,∞

√
u2

u2,∞
−
√

u1
u1,∞

]2
dx
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If u2 nicely behaves...

D(u) ≳
3∑

i=1

∫
Ω

|∇ui |2

ui
dx +

∫
Ω

[√
u1

u1,∞
− u2

u2,∞

√
u3

u3,∞

]2
dx

+

∫
Ω

u22
u22,∞

[√
u3

u3,∞
−
√

u2
u2,∞

]2
dx +

∫
Ω

[
u2

u2,∞

√
u2

u2,∞
−
√

u1
u1,∞

]2
dx

If we have
u2(x , t) ≥ c0 > 0 ∀(x , t)

Then

D(u) ≳ min{c20 , 1}D̂(u) with D̂(u) = Diffusion part + H (u)

It is important that

D̂(u) = 0 + conservation laws ⇔ u = u∞.

Then we can prove
D̂(u) ≥ λE (u|u∞).
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What it means on the network...
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There is a catch...

Asking for a lower bound

u2(x , t) ≥ c0 > 0 ∀(x , t)

is too much!

From the equation of u2

∂tu2 − d2∆u2 = 2k1u1 + k2u
2
2u3 − 3k3u

3
2 ≥ −3k3u

3
2

which gives

u2(x , t) ≳
1√
1 + t

∀(x , t).

→ Even if a trajectory would converge to the boundary equilibrium u∗ = (0, 0,M),
it cannot converge faster than (1 + t)−1.
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Competing phenomena - Algebraic decay
Therefore, instead of D(u) ≳ E (u|u∞) we can only prove

D(u) ≳
1

1 + t
E (u|u∞)

This is nevertheless enough to get an algebraic decay

d

dt
E (u|u∞) ≲ − 1

1 + t
E (u|u∞) ⇒ E (u(t)|u∞) ≲

1

1 + t
E (u(0)|u∞)
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Recovering exponential decay...

From
3∑

i=1

∥ui (t)− ui,∞∥2L1(Ω) ≲
1

1 + t
E (u(0)|u∞),

there is an explicit time T0 > 0 such that

∥u2(t)∥L1(Ω) ≳ c1 > 0 ∀t ≥ T0.

This is enough to show

D(u(t)) ≥ min{c1, 1}E (u(t)|u∞) ∀t ≥ T0

and we recover exponential decay towards to positive equilibrium.
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The result...

The corresponding mass-action reaction-diffusion system reads as
∂tu1 − d1∆u1 = −k1u1 + k3u

m+1
2

∂tu2 − d2∆u2 = mk1u1 + k2u
m
2 u3 − (m + 1)k3u

m+1
2

∂tu3 − d3∆u3 = k1u1 − k2u
m
2 u3

s.t.

{
∇ui · ν = 0, x ∈ ∂Ω

ui (x , 0) = ui,0(x), x ∈ Ω

Theorem (Fellner, T. ZAMP 2018)

Assume that infΩ u2,0(x) > 0, then the solution to the reaction-diffusion system
converges exponentially to the positive complex balanced equilibrium with
explicitly computable rates and constants.

B.Q. Tang (University of Graz) Boundary equilibria June 12, 2024 14 / 16



Conditional exponential trend to equilibrium

Theorem (Fellner, T. ZAMP 2018)

Assume that the reaction network is complex balanced and possesses a boundary
equilibrium. Assume moreover that

D(u(t)) ≥ Λ(t)E (u(t)|u∞) ∀t > 0,

where Λ(t) satisfies
∫∞
0

Λ(t)dt = +∞ then

u(t) −→ u∞ as t → ∞,

exponentially with computable rates and constants.

Related works

Craciun, Jin, Pantea, Tudorascu (2021): A+ nB ⇆ B + C ,
mA+ nB ⇆ pA+ qB.

Jin (2019): A+ 2B ⇆ B + C , shows the instability of boundary equilibria.

Pierre, Suzuki, Umakoshi (2018): α1S1 + . . . αmSm ⇆ β1S1 + . . .+ βmSm.
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Conclusion and Future

Conclusion

Entropy method gives quantitative convergence to equilibrium.

For boundary equilibria, it is enough to control the (possible) decay rate to
boundary.

Future

Extending the ideas in the case of boundary equilibria. We already failed
(have not succeeded) to apply it to the network1

S1 + S2 3S1

2S1 + S32S2

Geometric techniques from the ODE setting?

1D. Anderson. SIAM J. Appl. Math. (2011)
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