Higher order reduction methods for systems with multiple timescales

Bob Rink Vrije Universiteit Amsterdam

Eddie Nijholt (Imperial)

Sören von der Gracht (Paderborn)

Amsterdam Center for Dynamics and Computation

Ian Lizarraga (Sydney)

Martin Wechselberger (Sydney)

Chris Bick (Amsterdam)

Babette de Wolff (Amsterdam)

Multiple timescale systems

 $\dot{x} = F_{\varepsilon}(x) + \varepsilon F_{\varepsilon}(x) + \varepsilon^{2}$

Will see examples in: * Reaction networks * Coupled oscillators

Example: embedded relaxation oscillation

Another system with a hidden timescale

$$\frac{d}{dt}\begin{pmatrix} x_{1} \\ x_{2} \\ \chi_{3} \end{pmatrix} = \begin{pmatrix} \circ \\ -\chi_{3} \end{pmatrix} + \mathcal{E}\begin{pmatrix} a_{1}\chi_{3} - a_{2}\chi_{1}\chi_{2} \\ a_{3}\chi_{3} - a_{4}\chi_{2} \end{pmatrix} \xrightarrow{\chi_{2}} \chi_{3} \xrightarrow{\chi_{2}} \chi_{1}$$
"Nonstandard" slow dynamics:

$$\frac{1}{c}\frac{d}{dt}\begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} -a_{2}\chi_{1}\chi_{2} \\ -a_{4}\chi_{2} \end{pmatrix} + \mathcal{E}\begin{pmatrix} a_{1} \\ a_{3} \end{pmatrix}$$
Infraslow dynamics:

$$\frac{1}{c^{2}}\frac{d}{dt} = a_{1} - \frac{a_{2}a_{3}}{a_{4}}\chi_{1}$$

V U 🔊

AMSTERDAM

Reminder: Fénichel-Tikhonov's theorem

$$x = F_{o}(x) + \varepsilon F_{i}(x) + \varepsilon^{2}$$

THM: S_{e} persists as S_{e} if it is normally hyperbolic; the "reduced" slow dynamics is given by $\frac{1}{e} x = PF_{1}(x) + \epsilon \dots (x \in S_{e})$.

Parametrisation of the layer problem (Feliu et al. J. Nonlinear Sci. 2020)

The (simple) idea behind the parametrisation method

Solution: solve iteratively by series expansion Ansatz

$$\begin{aligned} \int e_{\varepsilon}(y) &= e_{0}(y) + \varepsilon e_{1}(y) + \varepsilon^{2} \dots \\ f_{\varepsilon}(y) &= \varepsilon f_{1}(y) + \varepsilon^{2} f_{2}(y) + \varepsilon^{3} \dots \end{aligned}$$

This produces:

$$\begin{cases} De_{\circ} \cdot f_{1} - DF_{\circ}(e_{\circ}) \cdot e_{1} = F_{1}(e_{\circ}) & =:G_{i} \\ De_{\circ} \cdot f_{2} - DF_{\circ}(e_{\circ}) \cdot e_{2} = \dots & =:G_{2} \\ \vdots & \vdots \\ De_{\circ} \cdot f_{i} - DF_{\circ}(e_{\circ}) \cdot e_{i} = \dots & =:G_{i} \\ VU \end{cases}$$

VRIJE UNIVERSITEIT AMSTERDAM

Solving the infinitesimal conjugacy equation $De_{o} \cdot f_{i} - DF_{o}(e_{o}) \cdot e_{i} = G_{i}$

im No

Parametrise normal bundle by $N_{o}: IR^{k} \rightarrow L(IR^{n-k}, IR^{n})$ $N_{o}: OF_{o}(e_{o}) \cdot N_{o} = N_{o} \cdot N_{o}$

invertible (n-k)x(n-k) matrix

Ansatz
$$e_i = De_i X_i + N_i Y_i$$
 yields
 $De_i f_i - N_i \cdot n_i Y_i = G_i$
 $ET_k S_i = G_i$

$$\frac{De_{\circ} \cdot f_{i}}{E T_{x} S_{\circ}} - \frac{N_{\circ} \cdot n_{\circ} \cdot Y_{i}}{E \text{ im } N_{\circ}} = G_{i} \quad \text{im } N_{\circ} \quad \int T_{x} S_{\circ}$$
Projections give

Projections give

$$De_{o} \cdot f_{i} = PG_{i}$$
 and $N_{o} \cdot n_{o}Y_{i} = (P-I)G_{i}$

For *i*=1 this becomes Tikhonov's formula:

$$De_{s} \cdot f_{s} = PF_{s}$$

Compare with CSP! VI

Finding hidden timescales

Application: Valorani et al. J. Comp. Phys 2005

$$\frac{d}{dt} \begin{pmatrix} X_{1} \\ X_{2} \\ X_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \begin{pmatrix} X_{1} - X_{2}^{2} \end{pmatrix} + \varepsilon \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} X_{1} X_{2} - X_{3} \end{pmatrix} + \delta \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} X_{2} X_{3} - X_{1} \end{pmatrix}$$

$$\frac{d}{\delta = 0.2} \begin{pmatrix} X_{1} \\ -1 \end{pmatrix} \begin{pmatrix} X_{2} X_{3} - X_{1} \end{pmatrix}$$

Analytical proof for $\delta = c \epsilon^2$.

High order phase reduction

$$\dot{x}_i = F_i(x_i) + \varepsilon G_i(x_1, \dots, x_m)$$

has limit cycle

For $\varepsilon = 0$, the product of periodic orbits defines an invariant quasi-periodic torus.

By normal hyperbolicity it pensists for 0< E << 1.

Phase reduction computes/approximates the dynamics on the persisting torus.

Remote synchronisation of coupled Stuart-Landau oscillators

Phase reduction with delay

Delay-coupled SL-oscillators

$$\dot{z}_1 = (a+ib)z_1 - |z_1|^2 z_1 + \varepsilon e^{i\rho} (z_2(t-\tau) - z_1)$$

$$\dot{z}_2 = (a+ib)z_2 - |z_2|^2 z_2 + \varepsilon e^{i\rho} (z_1(t-\tau) - z_2)$$

Phase reduction gives,
for
$$\psi := \phi, -\phi_2$$
,
 $\dot{\psi} = \varepsilon(-2\cos \alpha)\sin \psi$
 $+ \varepsilon^2(2\tau \sin \beta \sin \alpha)\sin \psi$
 $- \varepsilon^2(\tau + \frac{1}{2\alpha}\sin^2 2\alpha)\sin 2\psi$

