
Stochastic models of reaction networks

Daniele Cappelletti

Politecnico di Torino

Pula, Italy

June 11, 2024

June 12, 2024 1 / 76



Outline

1 Introduction to the stochastic models.

2 Large volume limits (on compact time intervals)

3 Convergence to equilibrium for stochastic models, what does it mean and when
does it happen?

4 Similarities and discrepancies between the behavior of the stochastic and
deterministic models as t →∞.

June 12, 2024 2 / 76



Assumed knowledge: reaction networks

We’ve seen reaction networks: {S, C,R}
S: species.
For example {A,B}.

C: complexes, linear combinations of the species over Z.
For example, {2A,A + B, . . . }

R: reactions. We will denote by

y → y ′ ∈ R

with usual convention (abuse of notation)

y ′ − y ∈ Zd .

For example, {2A→ A + B, . . . }

Will assume certain terminology: linkage class, weakly reversible, detailed balanced,
complex balanced, stoichiometric compatibility class.
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Assumed knowledge: deterministic models

We know that for a given network {S, C,R} we have a system of autonomous ODEs
that govern dynamics of the concentrations

ẋ(t) =
∑

y→y′∈R

κy→y′x(t)y (y ′ − y),

where for vectors u, v , we have

uv =
d∏

i=1

uvi
i .

where we take 00 = 1.

Assuming deterministic mass-action kinetics.

This model is appropriate when the counts of the molecules are high, which I’ll
discuss soon.
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Example

A + B
κ1→ 2B

B
κ2→ A

yields

ẋA(t) = −κ1xA(t)xB(t) + κ2xB(t)

ẋB(t) = κ1xA(t)xB(t)− κ2xB(t)

or

ẋ(t) = κ1xA(t)xB(t)
(
−1
1

)
+ κ2xB(t)

(
1
−1

)
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Stochastic model

A + B

2A

3C

and imagine that we want to track the counts of the molecules.

A

B

C
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Stochastic model

The dynamics can be specified if we can answer the following two questions
sequentially:

1 when will the next reaction take place?
2 which reaction will take place next?

Modelling assumption:

at time t , reaction y → y ′ ∈ R has an associated clock set to go off after an
amount of time given by an exponential random variable with a parameter of

λy→y′(X (t)),

independently on what happened in the past. The higher the parameter, the lower
tends to be the exponential random variable.

when the first such clock goes off, the associated reaction takes place.

Throw away all the clocks.

Now repeat.

The described process is a continuous-time Markov chain.
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Stochastic model

By the properties of exponential random variables, an equivalent simulation strategy is
given by the Gillespie’s algorithm.

Suppose X (t) = x .

Let
λ0(x) =

∑
y→y′∈R

λy→y′(x)

and let ∆ = Exp(λ0(x)).

Independently choose ȳ → ȳ ′ ∈ R with probability

λȳ→ȳ′(x)∑
y→y′ λy→y′(x)

.

Update X (t + s) = X (t) for 0 ≤ s < ∆ and

X (t + ∆) = X (t) + ȳ ′ − ȳ .

repeat.

This is not efficient if rates are very high, so many reactions take place in a short
amount of time and use a lot of computational power.
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Mass-action kinetics

A popular choice for intensity functions is stochastic mass-action kinetics:

λy→y′(x) = κy→y′
∏

i

xi !

(xi − yi )!
.

Example: If S1 → anything, then

λy→y′(x) = κy→y′1 ·
x1!

(x1 − 1)!
= κy→y′x1.

Example: If S1 + S2 → anything, then

λy→y′(x) = κy→y′1 ·
x1!

(x1 − 1)!

x2!

(x2 − 1)!
= κy→y′x1x2.

Example: If 2S2 → anything, then

λy→y′(x) = κy→y′
x2!

(x2 − 2)!
= κy→y′x2(x2 − 1).

Nonlinear if any reaction requires two or more molecules.
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Model of viral infection: Srivistava, You, Summers, and Yin, J. Theor. Biol., 218 (2002)

R1) T 1→ T + G, R2) G 0.025→ T , R3) T 1000→ T + S,

R4) T 0.25→ ∅, R5) S 2→ ∅, R6) G + S 7.5×10−6
→ V ,
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Gene network

R1) G 200→ G + M (Transcription)
R2) M 10→ M + P (Translation)
R3) M 25→ ∅ (Degradation of mRNA)
R4) P 1→ ∅ (Degradation of protein)
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Stochastic model

Gillespie algorithm is not efficient if rates are very high, so many reactions take place in
a short amount of time and use a lot of computational power.
Two research directions stem from this:

Approximate the stochastic model by

reduce the network (for example, eliminate intermediate fast steps);
take a law of large numbers limit if possible (will see later);
averaging fast subnetworks by putting them at equilibrium (will see later);
...

Use an approximate simulation strategy, such as tau leaping: count the number of
reactions that would occur in a time window if the state were constant, then
update.
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Section 1

Structural differences between deterministic and stochastic
reaction networks
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Structural differences

If at time t∗ the reaction y → y ′ takes place, then

Xt∗ = Xt∗− + y ′ − y

Therefore, the evolution of Xt is confined within the stoichiometric compatibility classes.
What is different from the deterministic case?
The state space for Xt is N|S|.
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Definition (Switched on/off reactions)

A reaction yr → y ′r is switched on at x if λr (x) > 0, otherwise it is switched off.

Definition (Accessible states)

z is accessible from x if ∃ (yi → y ′i )i=1,...,q such that

z = x +

q∑
i=1

ξi ,

and for any 1 ≤ j ≤ q, yj → y ′j is switched on at x +
∑j−1

i=1 ξi . In particular, x is
accessible from x .

Definition (Communicating states)
x and z are communicating if z is accessible from x and vice versa.
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Definition (Irreducible components)

An irreducible components of a reaction network is a set Γ ⊆ N|S| such that, for any
x ∈ Γ, z ∈ Γ if and only if it is accessible from x .

Γ is an irreducible component if and only if all the states of Γ are communicating, and
no state outside Γ is accessible from any x ∈ Γ.

Eventually, Xt will enter an irreducible component or drift to infinity;

The irreducible components are not necessarily a partition of N|S|;
If a single state constitutes an irreducible component, it is a absorbing state.
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Stochastic models – representations via counting processes

If Ry→y′(t) is the number of times reaction y → y ′ fires by time t , then simple booking:

X (t) = X (0) +
∑

y→y′
(y ′ − y) · Ry→y′(t).

Ry→y′(t) is a counting process with (think exponential clocks)

P(Ry→y′(t + ∆)− Ry→y′(t) = 1 | X (t)) = λy→y′(X (t))∆ + o(∆).

Note that if Y is a unit-rate Poisson process then

P
(

Y
(∫ t+∆

0
λy→y′(X (s))ds

)
− Y

(∫ t

0
λy→y′(X (s))ds

)
= 1

)
≈ λy→y′(X (t))∆.

June 12, 2024 21 / 76



Stochastic models – representations via counting processes

If Ry→y′(t) is the number of times reaction y → y ′ fires by time t , then simple booking:

X (t) = X (0) +
∑

y→y′
(y ′ − y) · Ry→y′(t).

Ry→y′(t) is a counting process with (think exponential clocks)

P(Ry→y′(t + ∆)− Ry→y′(t) = 1 | X (t)) = λy→y′(X (t))∆ + o(∆).

Note that if Y is a unit-rate Poisson process then

P
(

Y
(∫ t+∆

0
λy→y′(X (s))ds

)
− Y

(∫ t

0
λy→y′(X (s))ds

)
= 1

)
≈ λy→y′(X (t))∆.

June 12, 2024 21 / 76



Stochastic models – representations via counting processes

If Ry→y′(t) is the number of times reaction y → y ′ fires by time t , then simple booking:

X (t) = X (0) +
∑

y→y′
(y ′ − y) · Ry→y′(t).

Ry→y′(t) is a counting process with (think exponential clocks)

P(Ry→y′(t + ∆)− Ry→y′(t) = 1 | X (t)) = λy→y′(X (t))∆ + o(∆).

Note that if Y is a unit-rate Poisson process then

P
(

Y
(∫ t+∆

0
λy→y′(X (s))ds

)
− Y

(∫ t

0
λy→y′(X (s))ds

)
= 1

)
≈ λy→y′(X (t))∆.

June 12, 2024 21 / 76



Stochastic models – representations via counting processes

This suggests that the process can be represented as the solution to

X (t) = X (0) +
∑

y→y′∈R

Yy→y′

(∫ t

0
λy→y′(X (s))ds

)
︸ ︷︷ ︸

Ry→y′ (t)

·(y ′ − y),

where the {Yy→y′} are independent unit rate Poisson processes.

Called the random time change representation and is due to Thomas Kurtz.

Very useful for purposes of both analysis and simulation.
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Example: population growth

Example

B
1/3→ 2B,

with X (0) = 10.

ODE:
ẋ(t) = 1

3 x(t)

Stochastic equation:

X (t) = 10 + Y
(∫ t

0

1
3

X (s)ds
)
.
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Connections between the models: LLN

Consider a parameterized family of models satisfying the following
X V

i (0) = O(V ), and
For y → y ′ ∈ R,

κV
y→y′ =

1
V ‖y‖1−1 κy→y′ ,

where ‖y‖1 = y1 + · · ·+ yd .
Example:

∅
Vκy→y′→ Ccomplex

A
κy→y′→ Ccomplex

A + B
V−1κy→y′→ Ccomplex.

Consider Vx ∈ Zd
≥0 and note that in each case,

λV
k (Vx) = κV

y→y′
Vx!

(Vx − y)!
≈ Vκy→y′x

y .

Example: A + B → ...

κV
y→y′

Vx!

(Vx − y)!
= V−1κy→y′(VxA)(VxB) = Vκy→y′xAxB.
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Connections between the models: LLN

Now define
X

V
= V−1X V ,

to be normalized process and note

X
V

(t) =
1
V

X0 +
∑

y→y′

1
V

Yy→y′

(∫ t

0
λV

y→y′(X
V (s))ds

)
(y ′ − y)

=
1
V

X0 +
∑

y→y′

1
V

Yy→y′

(∫ t

0
λV

y→y′(V · X
V

(s))ds
)

(y ′ − y)

≈ 1
V

X0 +
∑

y→y′

1
V

Yy→y′

(
V
∫ t

0
κy→y′X

V
(s)y ds

)
(y ′ − y)

Apply the Law of Large Numbers:

1
V

Yy→y′(Vu) ≈ u,

to get the usual ODE (integral version).

x(t) = x(0) +
∑

y→y′

∫ t

0
κy→y′x(s)y ds · (y ′ − y).
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Precise statement

Theorem

Assume that for a fixed positive state z0 ∈ Rd
>0 and for all ε > 0 we have

lim
V→∞

P
(∣∣∣V−1X V (0)− z0

∣∣∣ > ε
)

= 0.

Moreover, assume that the solution z of the ODE with z(0) = z0 is unique and is
defined up to a finite fixed time T > 0. Then, for any ε > 0

lim
V→∞

P
(

sup
t∈[0,T ]

∣∣∣V−1X V (t)− z(t)
∣∣∣ > ε

)
= 0.
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Precise statement

0 T

t

The probability that, up to time T , V−1X V (t) is between the two red lines tends to one
for V →∞.
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Multiscale Setting (single time scale)

Consider a collection of stochastic reaction networks X V and assume there exist two
non-negative vectors α, β such that:

V−αX V (0) −−−−→
V→∞

Z0

V−βy→y′λN
y→y′(V

αx) −−−−→
V→∞

λy→y′(x) for any x ∈ R|S|≥0

No species is consumed at a higher order than its abundance (single time scale)

Theorem (Ball, Kurtz, Popovich and Rempala 2006, Pfaffelhuber and
Popovich 2013, Kang and Kurtz 2013)

V−αX V
t ====⇒

V→∞
Z0 +

∑
y→y′∈R1

ξ̂y→y′

∫ t

0
λy→y′∈R2 (Zs)ds +

∑
y→y′

ξ̂y→y′Yr ′

(∫ t

0
λr ′ (Zs) ds

)
up to a fixed finite time T .
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Section 2

Probability measures moving!
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Stochastic models

Instead of tracking the exact state we are in, we can just be happy to describe the
probability measures of the random variable Xt , for all t .

It turns out, that’s just a linear ODE! It is called the Kolmogorov Forward equation, or
the chemical master equation in this context:

d
dt

p(x , t) =
∑

y→y′
p(x − y ′ + y , t)λy→y′(x − y ′ + y)−

∑
y→y′

p(x , t)λy→y′(x),

where p(x , t) = P(X (t) = x).

There is one such equation for each state in the system, possibly infinitely many.

Solving this equation analytically is often difficult (impossible). Of course, if finite state
space,

Ṗt = PtQ =⇒ Pt = etQ .
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Example: population growth

Example

B
1/3→ 2B,

Forward equation (master equation): For x ∈ {10, 11, . . . }
d
dt

p(x, t) =
1
3

(x − 1)p(x − 1, t) −
1
3

x · p(x, t)

i.e.
d
dt

p(10, t) =
1
3
· 9 · p(9, t) −

1
3
· 10 · p(10, t)

d
dt

p(11, t) =
1
3
· 10 · p(10, t) −

1
3
· 11 · p(11, t)

d
dt

p(12, t) =
1
3
· 11 · p(11, t) −

1
3
· 12 · p(12, t)

...
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Example: population growth - evolution of distribution
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Section 3

The notion of equilibrium in the stochastic setting
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Stationary distribution

Let p(x , t) = P(Xt = x).


p(x , 0) = P(X0 = x)
dp(x , t)

dt
=
∑

y→y′∈R

p(x − y ′ + y , t)λy→y′(x − y ′ + y)− p(x , t)
∑

y→y′∈R

λy→y′(x)

The probabilities π(x) that are equilibrium points for the above ODE, that is such that∑
y→y′∈R

π(x − y ′ + y)λy→y′(x − y ′ + y)− π(x)
∑

y→y′∈R

λy→y′(x) = 0 ∀x ∈ N|S|,

are the stationary distributions of the system.
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Stationary distributions

Stochastic: convergence of distribution to equilibria
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Properties of the stationary distributions

If the initial distribution π(x) of the system is stationary, then

P(Xt = x) = π(x).

As for equilibrium points in the deterministic case, we often have

lim
t→∞

P(Xt = x) = π(x),

with π(x) stationary.

The stationary distribution are concentrated on the irreducible components.

If we restrict Xt to an irreducible component, then the stationary distribution, if it
exists, is unique.
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If a SRN has a stationary distribution π, then (if the model is restricted to an irreducible
component)

for any state x
P(Xt = x) −−−→

t→∞
π(x);

for any state x
Nx (t)

t
−−−→
t→∞

π(x),

where Nx (t) is the time spent by the process in state x up to time t ;
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What can we use them for?

We can use stationary distributions to

know what is the long-term behaviour of a system;

know what is the average expression of some protein over a long time;

approximate multi-scale models by assuming that the faster systems are always at
stationary regime;
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Deficiency Zero Theorem - stochastic

Theorem (A, Craciun, Kurtz, 2010)
Let {S, C,R} be a chemical reaction network with rate constants κk . Suppose:

1 the network is weakly reversible, and
2 has a deficiency of zero.

Then, for any irreducible set Γ, the stochastic system has a product form stationary
distribution

π(x) =
1

Z V

d∏
i=1

e−ci
cxi

i

xi !
, x ∈ Γ, (1)

where Z V is a normalizing constant and c is a complexed-balanced equilibrium of the
corresponding ODE.

Converse proved by Carsten Wiuf and me.

Theorem
If the stationary distribution on enough states is the distribution above, then the ODE
model is complex-balanced with complex-balanced equilibrium c.
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Consider

2A 2B A + 3B 3A + B
κ1 κ2

on

1 2 3 4 5 60

1

2

3

4

5

6

xA

xB

The dynamics are the same of

2A 2B 7A 0

κ1

3κ2
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Formulas for stationary distributions via reaction graph structure

Anderson, Craciun, Kurtz, Product-form stationary distributions for deficiency zero
chemical reaction networks, 2010;

Anderson, C., Koyama, Kurtz, Non-explosivity of stochastically modeled reaction
networks that are complex balanced, 2017;

C., Wiuf, Product-form Poisson-like distributions and complex balanced reaction
systems, 2015;

Hoessly, Mazza, Stationary distributions and condensation in autocatalytic
reaction networks, 2019;

Bibbona, Kim, Wiuf Stationary distributions of systems with discreteness-induced
transitions, 2020;
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Formulas for stationary distributions via reaction graph structure

Hornos, Schultz, Innocentini, Wang, Walczak, Onuchic, Wolynes Self-regulating
gene: an exact solution, 2005;

Mélykúti, Hespanha, Khammash Equilibrium distributions of simple biochemical
reaction systems for time-scale separation in stochastic reaction networks, 2014;

Anderson, Craciun, Gopalkrishnan, Wiuf Lyapunov functions, stationary
distributions, and non-equilibrium potential for reaction networks, 2015;

Anderson, Cotter Product-form stationary distributions for deficiency zero
networks with non-mass action kinetics, 2016;

Hong, Kim, Al-Radhawi, Sontag, Kim Derivation of stationary distributions of
biochemical reaction networks via structure transformation, 2021;
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Approximation of stationary distributions

There are techniques to approximate the stationary distributions! As an example, state
space truncation techniques 1

They assume a stationary distribution exists!

1Gupta, Mikelson, Khammash, A finite state projection algorithm for the stationary solution of the chemical
master equation, 2017; Kuntz, Thomas, Stan, Barahona, Stationary distributions of continuous-time Markov
chains: a review of theory and truncation-based approximations, 2021]
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Existence of stationary distribution via reaction graph structure

Some works connect graphical properties with existence of stationary distributions:

Gupta, Briat, Khammash, A Scalable Computational Framework for Establishing
Long-Term Behavior of Stochastic Reaction Networks, 2013;

Anderson, Kim Some network conditions for positive recurrence of stochastically
modeled reaction networks, 2018;

Anderson, C., Kim, Stochastically modeled weakly reversible reaction networks
with a single linkage class, 2020;

Anderson, C., Kim, Nguyen Tier structure of strongly endotactic reaction networks,
2020;

Xu, Hansen, Wiuf, Full classification of dynamics for one-dimensional continuous
time Markov chains with polynomial transition rates, pre-print;

C., Pal Majumder, Wiuf, The dynamics of stochastic mono-molecular reaction
systems in stochastic environments, 2021.
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The chemical recurrence conjecture

Conjecture
If a network is weakly reversible, the associated stochastic mass-action system has a
stationary distribution for any choice of rate constants.

To prove the conjecture, we only need to prove there is no drift towards infinity.
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The idea
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Section 4

Foster-Lyapunov criteria
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The generator of a Markov process

Given a function V , the generator of the process X applied to the function V is a
function defined by

LV (x) = lim
h→0

E [V (Xh)|X0 = x ]− V (x)

h

=
d
dt

E [V (Xt )](x)

June 12, 2024 50 / 76



The generator of a Markov process

Given a function V , the generator of the process X applied to the function V is a
function defined by

LV (x) = lim
h→0

E [V (Xh)|X0 = x ]− V (x)

h
=

d
dt

E [V (Xt )](x)

June 12, 2024 50 / 76



Foster-Lyapunov criterium

Consider a stochastic mass-action system {X (t) : t ≥ 0}.

Theorem ( Meyn and Tweedie, Stability of Markovian Processes III :
Foster-Lyapunov Criteria for Continuous-Time Processes, 1993)

If there exists a scalar function V such that

V (x) > 0 for all x;

limx→∞ V (x) =∞;

there exists a compact set K and c > 0 such that

LV (x) =
∑

y→y′
λy→y′(x)

(
V (x + y ′ − y)− V (x)

)
< −c

for all x /∈ K .

Then, X has a stationary distribution.
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Usual strategy

In order to have

LV (x) =
∑

y→y′
λy→y′(x)

(
V (x + y ′ − y)− V (x)

)
< −c (2)

we can try to construct a function V that decreases along the most likely transitions,
given by the dominant reactions.

This strategy is used, for example, in Anderson, Kim Some network conditions for
positive recurrence of stochastically modeled reaction networks, 2018; Anderson, C.,
Kim, Stochastically modeled weakly reversible reaction networks with a single linkage
class, 2020; Anderson, C., Kim, Nguyen Tier structure of strongly endotactic reaction
networks, 2020.
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The boundary is often a problem
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Section 5

Discrepancies between the long-term behaviour of deterministic
and stochastic models
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Consider the mass-action system

A + B 2B

B A

κ1

κ2

xA

xB

In the deterministic setting, if zA(0) + zB(0) = N with N > κ2
κ1

, then

lim
t→∞

z(t) =

(
κ2

κ1
, N − κ2

κ1

)
.

In the stochastic setting, the extinction of the species B will eventually occur, and
almost surely limt→∞ X (t) = (N, 0)

If N is large,
(
κ2

κ1
, N − κ2

κ1

)
and (N, 0) are very different!

Also: the deterministic model does not give the mean values of the stochastic process!
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Section 6

Boundary Equilibria and Absorption
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Idea! Since there is a boundary steady state, and the stochastic model explores
around, it will be found!

However we proved by example2 that

Lack of positive equilibria ; Extinction

Existence of stationary distribution
on every state ; Positive equilibria

2David F. Anderson, Daniele Cappelletti, Discrepancies between extinction events and boundary equilibria in
reaction networks
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A+B
κ1

B+C
κ2

κ3
2B

C
κ4

A
κ5

E

A+D
κ6

D+E
κ7

κ8
2D

A + B + C + D + E is conserved;

There is no positive equilibrium unless

κ3κ4

κ1κ2
=
κ5κ8

κ6κ7
.

There is a stationary distribution with mass on all states: The sets {B = 0} and
{D = 0} are absorbing, but cannot be reached.
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Section 7

Strongly Endotactic Networks
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Strongly endotactic networks

Definition
Let H be the convex hull formed by the source complexes. A network is called strongly
endotactic if

all the reactions point inside or along the faces of H;

for each face of H there is at least one reaction originated in the face and pointing
away from it.

0 2A + B

4A + 4BA

κ1

κ
2

κ3

A

B

The network is strongly endotactic!
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Strongly endotactic networks

Theorem (Gopalkrishnan, Miller, and Shiu, SIAM J. Appl. Dyn. Syst., 2014)
Consider a deterministic mass-action system which is strongly endotactic. Then, there
exists a compact global attractor within each stoichiometric compatibility class, for any
choice of rate constants (permanence).

Theorem (Agazzi, Dembo and Eckmann, Ann. Appl. Prob. 2017)
If a network is strongly endotactic and no subset of the state space boundary is
absorbing, then the rescaled stochastic mass-action system satisfies a sample path
Large Deviation Principle in the supremum norm.

What about stationary distributions?
When stochastically modeled, the network of the previous example is transient!
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Strongly endotactic networks

Theorem (Anderson, C., Kim and Tung, SPA 2020)
If a network is strongly endotactic, then it is positive recurrent after adding outflows and
inflows for every species, that is reactions of the type mS → 0 and 0→ m′S, for
specific choices of m (it should be bigger than the maximum stoichiometricity minus 1).

Theorem (Anderson, C., Kim and Tung, SPA 2020)
If a bimolecular network is strongly endotactic, then it is positive recurrent after adding
reactions of the type S → 0 and 0→ S for all species.
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Union of networks, an open problem

When is it true that the union of two positive recurrent networks is positive recurrent?

The stochastic mass-action system

0

2A + B

2B

κ 1

κ
2

κ
3

is complex balanced (hence positive recurrent) for any choice of rate constants.
If we add the reaction

4A + B

3A

κ 4

which may seem innocent enough (it consumes both A and B), the model becomes
transient (for any choice of rate constants).
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Union of networks, a warning
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ACR Theorems: deterministic and stochastic

Theorem (M. Feinberg and G. Shinar, Science, 2010)
Consider a deterministic mass-action system that

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in one species S,

then the system has absolute concentration robustness in S.
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Differing in one species

Examples:
1

A, A + B

differ in species B.

2

XT , XT + 3Yp

differ in species Yp.

3

G, 2G

differ in species G.
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Terminal and non-terminal complexes

XD X XT Xp

Xp+Y XpY X+Yp

XD+Yp XDYp XD+Y

k1

k2[   ]

k3

k4

k5

k6

k7

k8

k9

k10

k11

[   ]T

D

The orange complexes are called terminal.

The blue complexes are called non-terminal.
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Theorems: deterministic and stochastic

Theorem (M. Feinberg and G. Shinar, Science, 2010)
Consider a deterministic mass-action system that

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in species S,

then the system has absolute concentration robustness in S.

Theorem (Anderson, Enciso, Johnston, 2014 a)
aDavid F. Anderson, Germán Enciso, and Matthew Johnston, Stochastic analysis of biochemical

reaction networks with absolute concentration robustness, J. Royal Society Interface, Vol. 11, 2014.

Consider a stochastic mass-action system that:

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in species S,

(new) is conservative,

then with probability one the system undergoes an extinction.
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Time until absorption

Consider
A + B

κ1−→ 2B B
κ2−→ A

and imagine the initial condition X (0) is near to the deterministic equilibrium (q,N − q).

If N is big:

the amount of B is not significantly changed by the occurrence of a reaction;

the dynamics of A is approximately governed by

A
κ1N−−⇀↽−−
κ2N

0

The above reaction system has Poisson stationary distribution!
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Results

A + B
κ1−→ 2B B

κ2−→ A

sup
N

X N
A (0) <∞ and N−1X N

B (0) −−−−→
N→∞

1

Theorem (Anderson, C. and Kurtz, 2017)
For any fixed time points T > δ > 0 and any continuous bounded ϕ,

sup
t∈[δ,T ]

{
E
[
ϕ(X N

A (t))
]
− E

[
ϕ(Pois(q))

]}
−−−−→
N→∞

0.

Theorem (Anderson, C. and Kurtz, 2017)
For any fixed time point T > 0 and any continuous bounded ϕ,

sup
t∈[0,T ]

∫ t

0

{
E
[
ϕ(X N

A (s))
]
− E

[
ϕ(Pois(q))

]}
ds −−−−→

N→∞
0.

2David F. Anderson, Daniele Cappelletti, and Thomas G. Kurtz, Finite time distributions of stochastically
modeled chemical systems with absolute concentration robustness, SIAM Journal on Applied Dynamical
Systems 2017, vol. 16(3)
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EnvZ/OmpR signaling system

Consider

XD
κ1−−−⇀↽−−−
κ2[D]

X
κ3[T]−−−⇀↽−−−
κ4

XT κ5−−→ Xp

Xp + Y
κ6−−⇀↽−−
κ7

XpY κ8−−→ X + Yp

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y ,

modelling EnvZ/OmpR osmoregulatory signaling system in Escherichia coli.

Yp is an ACR species (structural conditions by [Shinar and Feinberg, 2010]);

by [Anderson, Enciso and Johnston, 2014] all the species except Xp and Yp are
absorbed at 0;

by [Anderson, C. and Kurtz, 2017] the time until absorption tends to infinity and Yp

is Poisson distributed around its ACR equilibrium.
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Theorems: deterministic and stochastic

Theorem (M. Feinberg and G. Shinar, Science, 2010)
Consider a deterministic mass-action system that

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in species S,

then the system has absolute concentration robustness in S.

Theorem (Anderson, Enciso, Johnston, 2014)

Consider a stochastic mass-action system that:

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in species S,

(new) is conservative,

then with probability one the system undergoes an extinction.

2David F. Anderson, Germán Enciso, and Matthew Johnston, Stochastic analysis of biochemical reaction
networks with absolute concentration robustness, J. Royal Society Interface, Vol. 11, 2014.
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IDEA!

A + B 2B

B A

κ1

κ2

xA

xB

Say that a species S is ACR, with ACR value q.
Say that the system is conservative.
Then, for some stoichiometric compatibility classes (with conservative quantity
smaller than q) there can be no positive equilibrium! There must be some
convergence to the boundary.
Since stochastic models “explore” the state space more, the stochastic model gets
trapped in the boundary!

Conjecture
Consider a stochastic mass-action system that is ACR, if deterministically modeled.
Then, with probability one it undergoes an extinction.
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Theorem (Anderson, Enciso, Johnston, 2014)

Consider a stochastic mass-action system that:

has a deficiency of one.

admits a positive steady state and

has two non-terminal complexes that differ only in species S,

(new) is conservative,

then with probability one the system undergoes an extinction.

It is proven by example3 that if any of the above conditions is discarded, even by
adding

Absolute Concentration Robustness;

bimolecularity,

the conclusions do not hold anymore.

Hence ACR (+ bimolecularity, mass conservation etc.) does not imply extinction.

3David F. Anderson, Daniele Cappelletti, Discrepancies between extinction events and boundary equilibria in
reaction networks, submitted.
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