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x
not(miR200) and (SNAIL or SLUG)

EMT network, from Selvaggio et al., Cancer Research, 2020



Outline

1 What is a Boolean network?

2 Theoretical questions

3 “Practical” questions



Boolean networks

n species

f : {0,1}n → {0,1}n
Example: n = 2

f (x1,x2) = ((1− x1)x2,x1)

Interaction graph

vertices {1, . . . ,n}

edge j
s−→ i at x if

fi (x̄ j )− fi (x)

x̄ jj − xj
= s ∈ {−1,1}

where x̄ jk = xk for k , j , x̄ jj = 1− xj

1 2

1
1−→ 2 at x = 00 :

f2(10)− f2(00)
1−0

= 1



Boolean networks

n species

f : {0,1}n → {0,1}n
Example: n = 2

f (x1,x2) = ((1− x1)x2,x1)

State transition graph

vertices {0,1}n

edges (transitions)
⋄ synchronous:

x 7→ f (x) 7→ f2(x) 7→ . . .

⋄ asynchronous:
x→ x̄ i if fi (x) , xi

⋄ . . .
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Examples and definition of attractor
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Attractors = terminal strongly connected components

fixed points or stable states cyclic attractors



Interaction cycles and attractors

isolated positive cycle

⇓
two fixed points

isolated negative cycle

⇓
one cyclic attractor

Remy et al. 2003

∃ positive local cycle

⇑
multiple attractors

∃ negative “global” cycle

⇑
∃ cyclic attractor

“rules of Thomas” overview: Richard 2019
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Attractors and trap spaces

f (x1,x2,x3) = (x1 ∨ x3,x1 ∧ (¬x2 ∨ x3),x1 ∧ x2 ∧¬x3)
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cyclic attractor

(“difficult”)

attractors
trap spaces = invariant subspaces

f (000) = 000
minimal

f (1⋆⋆) ⊆ 1⋆⋆
minimal

000 100

110

111

f (⋆⋆⋆) ⊆ ⋆⋆⋆

f (0⋆0) ⊆ 0⋆0

Klarner et al. 2015
Trinh et al. 2022: trap spaces = siphons of Petri netri encoding
Moon et al. 2023: computational complexity



Attractors and trap spaces

f (x1,x2,x3) = (x1 ∨ x3,x1 ∧ (¬x2 ∨ x3),x1 ∧ x2 ∧¬x3)

000

001

010

011

100

101

110

111

asynchronous dynamics

000

fixed point

(“easy”)

100

110

111

cyclic attractor

(“difficult”)

attractors

trap spaces = invariant subspaces
f (000) = 000
minimal

f (1⋆⋆) ⊆ 1⋆⋆
minimal

000 100

110

111

f (⋆⋆⋆) ⊆ ⋆⋆⋆

f (0⋆0) ⊆ 0⋆0

Klarner et al. 2015
Trinh et al. 2022: trap spaces = siphons of Petri netri encoding
Moon et al. 2023: computational complexity



Attractors and trap spaces

f (x1,x2,x3) = (x1 ∨ x3,x1 ∧ (¬x2 ∨ x3),x1 ∧ x2 ∧¬x3)

000

001

010

011

100

101

110

111

asynchronous dynamics

000

fixed point

(“easy”)

100

110

111

cyclic attractor

(“difficult”)

attractors

trap spaces = invariant subspaces
f (000) = 000
minimal

f (1⋆⋆) ⊆ 1⋆⋆
minimal

000 100

110

111

f (⋆⋆⋆) ⊆ ⋆⋆⋆

f (0⋆0) ⊆ 0⋆0

Klarner et al. 2015
Trinh et al. 2022: trap spaces = siphons of Petri netri encoding
Moon et al. 2023: computational complexity



Attractors and trap spaces

f (x1,x2,x3) = (x1 ∨ x3,x1 ∧ (¬x2 ∨ x3),x1 ∧ x2 ∧¬x3)

000

001

010

011

100

101

110

111

asynchronous dynamics

000

fixed point

(“easy”)

100

110

111

cyclic attractor

(“difficult”)

attractors

trap spaces = invariant subspaces
f (000) = 000
minimal

f (1⋆⋆) ⊆ 1⋆⋆
minimal

000 100

110

111

f (⋆⋆⋆) ⊆ ⋆⋆⋆

f (0⋆0) ⊆ 0⋆0

Klarner et al. 2015
Trinh et al. 2022: trap spaces = siphons of Petri netri encoding
Moon et al. 2023: computational complexity



A taxonomy of asynchronous attractors

trap spaces

minimal trap spaces

FIXED
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Conditions for “nice” asynchronous attractors?

Networks with linear cuts (Naldi, Richard and Tonello 2023)

1

2

5 3 7

6

4

✓ {2,3,5,6} are linear
(one regulator, one target)

✓ they are a feedback vertex set
(if removed, no cycles)

✓ intercept all paths from variables with
multiple targets to variables with multiple
regulators

▷ attractors 1-to-1 with minimal trap spaces

▷ attractor reachability from initial condition x :
if linear variables are “copies” of their regulators, all attractors
contained in the minimal trap space containing x are reachable
from x
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Conditions for “nice” asynchronous attractors?

Separating attractors (Richard and Tonello 2023)

▷ conditions for each attractor in a separate subspace/trap space?
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Conditions for “nice” asynchronous attractors?

Separating attractors (Richard and Tonello 2023)

▷ conditions for each attractor in a separate subspace/trap space?

fixing
|A| = 1 ∀A

converging
∃!A trapping

separating,
⟨A⟩ = [A] ∀A

trap-separating

⟨A⟩ ∩ ⟨B⟩ = ∅
∀A ̸= B

separating

[A] ∩ [B] = ∅ ∀A ̸= B

no negative cycle no positive cycle linear cut

no path from
negative to
positive cycle

no negative and
positive cycle

intersect

feedback number 2
and

no embedding of H2

at least one
positive cycle,

unique negative cycle
meets all cycles

strong, at least one
positive cycle,

unique negative cycle
meets all cycles

at least one
negative cycle,

unique positive cycle
meets all cycles

strong, at least
one negative cycle,
unique positive cycle

meets all cycles

strong and
at most one
negative cycle

unique positive
cycle meets
all cycles

positive
feedback
number 1

negative
feedback
number 1

at most one
positive cycle

at most one
negative cycle



Problem 1: finding attractors

▷ using symbolic computation (AEON): Beneš et al. 2021, 2022

▷ breaking negative cycles and using trap spaces (mtsNFVS): Trinh
et al. 2021, 2021

▷ reduction: Tonello and Paulevé 2023

original reduced
Model nodes AEON mtsNFVS nodes reduction AEON mtsNFVS
MAPK 53 5.7 28.9 ±5.7 (3 DNF) 10 0.0 0.3 0.7
IL-6 55 774.6 14.8 ±1.8 17 0.0 6.0 7.4
EMT 56 25.6 DNF 17 0.1 0.7 1.4
T-LGL 58 17.5 2.2 18 0.0 0.9 1.9
CACC 66 9.3 0.5 11 0.0 0.3 0.7
AD 74 361.9 0.7 10 0.0 0.4 0.8
AGS 83 1.7 0.6 2 0.0 0.3 0.7
CC 87 DNF 8.2 ±3.5 35 0.3 11.1 6.0
SP 102 DNF DNF 33 0.1 0.8 1.1
SIPC 116 DNF 1664.7 ±506.3 32 0.6 6.9 53.7 ±7.4
DSP 144 DNF 2.3 10 0.0 0.4 0.7
C3.0 176 DNF 2.1 14 0.1 0.4 1.0
EP 183 DNF 62.7 ±64.2 25 0.1 0.6 2.4



Attractors and reduction

. . . X
from 1 attractor
to 2 attractors

counterexamples: Schwieger and Tonello 2024

A
variable

elimination

x

(x1, . . . , fi (x1, . . . ,xi , . . . ,xn ), . . . ,xn )XTonello and Paulevé 2023

Theorem: states in attractors can be reconstructed from states in attractors of the reduction
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Reduction approach: idea

minimal trap spaces

✓ FIXED

POINTS

✓ ONE

ATTRACTOR

ONE?

MORE?

ATTRACTOR?
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Problem 2: control strategy identification

EMT network, from Selvaggio et al., Cancer Research, 2020

phenotypes
e.g. M1 = {AJ1 = 0,AJ2 = 0,FA1 =

1,FA2 = 0,FA3 = 0}

node interventions
e.g. {ROS = 1,PAK = 0}

identify (minimal number of) node or edge interventions s.t.

▷ all attractors contained in a given phenotype

▷ no attractors contained in a given phenotype

▷ attractors reachable from some given initial conditions . . .

▷ . . .



Problem 3: marker set identification

EMT network, from Selvaggio et al., Cancer Research, 2020

P = phenotype variables

for x in attractor,
áP (x) identifies the phenotype

identify (minimal number of) marker variables M :
for all x ,y attractor states

áM (x) = áM (y) ⇒ áP (x) = áP (y)

Klarner et al. 2021



The end

Thank you
elisa.tonello@fu-berlin.de, elisa@tonello.me
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