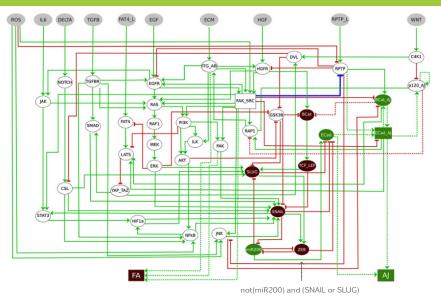
Structure and dynamics of discrete interaction networks: some recent trends

Elisa Tonello

Department of Mathematics and Computer Science Freie Universität Berlin

elisa.tonello@fu-berlin.de

Boolean modelling



EMT network, from Selvaggio et al., Cancer Research, 2020

1 What is a Boolean network?

2 Theoretical questions

Boolean networks

$$\label{eq:response} \begin{split} n \text{ species} \\ f \colon \{0,1\}^n \to \{0,1\}^n \end{split}$$

Example: n = 2 $f(x_1, x_2) = ((1 - x_1)x_2, x_1)$

Interaction graph

• vertices {1,...,n}

• edge
$$j \xrightarrow{s} i$$
 at x if

$$\frac{f_i(\bar{x}^j) - f_i(x)}{\bar{x}_j^j - x_j} = s \in \{-1, 1\}$$

where
$$\bar{x}_k^j = x_k$$
 for $k \neq j$, $\bar{x}_j^j = 1 - x_j$

$$C_{1}^{2}$$

$$1 \xrightarrow{1} 2$$
 at $x = 00$:

$$\frac{f_2(10) - f_2(00)}{1 - 0} = 1$$

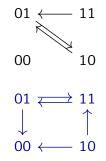
Boolean networks

n species $f: \{0, 1\}^n \to \{0, 1\}^n$

Example: n = 2 $f(x_1, x_2) = ((1 - x_1)x_2, x_1)$

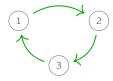
State transition graph

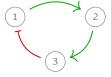
- vertices {0, 1}ⁿ
- edges (transitions)
 - ♦ synchronous: $x \mapsto f(x) \mapsto f^2(x) \mapsto \dots$
 - ♦ **asynchronous**: $x \rightarrow \bar{x}^i$ if $f_i(x) \neq x_i$



٥ ...

Examples and definition of attractor





Attractors = terminal strongly connected components

• fixed points or stable states

• cyclic attractors

Interaction cycles and attractors

isolated positive cycle ↓ two fixed points

Remy et al. 2003

isolated negative cycle ↓ one cyclic attractor

Interaction cycles and attractors

isolated positive cycle ↓

two fixed points

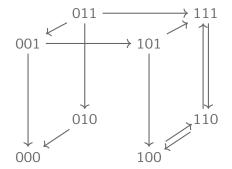
Remy et al. 2003

"rules of Thomas" overview: Richard 2019

isolated negative cycle ↓ one cyclic attractor

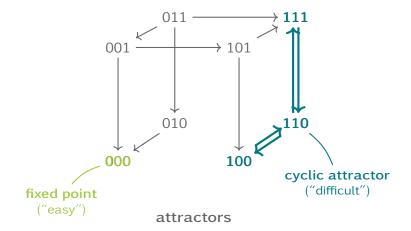
∃ negative "global" cycle ↑ ∃ cyclic attractor

 $f(x_1, x_2, x_3) = (x_1 \lor x_3, x_1 \land (\neg x_2 \lor x_3), x_1 \land x_2 \land \neg x_3)$

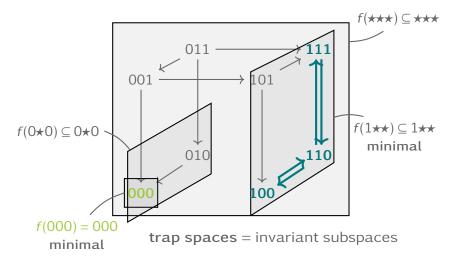


asynchronous dynamics

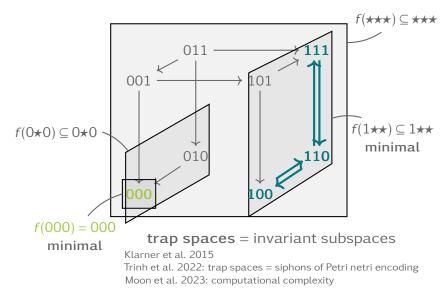
 $f(x_1, x_2, x_3) = (x_1 \lor x_3, x_1 \land (\neg x_2 \lor x_3), x_1 \land x_2 \land \neg x_3)$

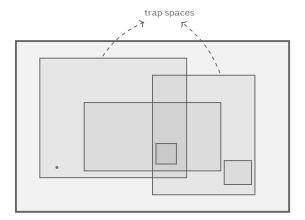


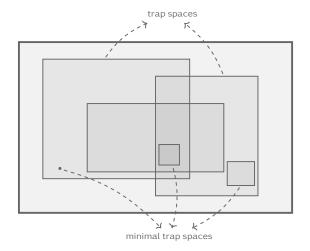
 $f(x_1, x_2, x_3) = (x_1 \lor x_3, x_1 \land (\neg x_2 \lor x_3), x_1 \land x_2 \land \neg x_3)$

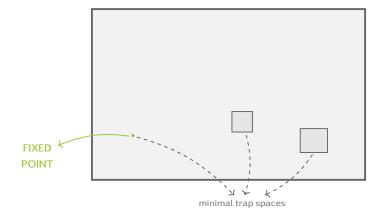


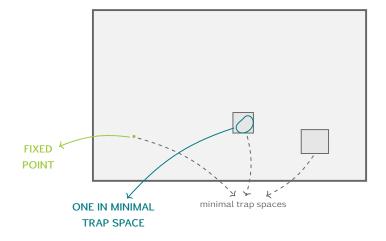
 $f(x_1, x_2, x_3) = (x_1 \lor x_3, x_1 \land (\neg x_2 \lor x_3), x_1 \land x_2 \land \neg x_3)$

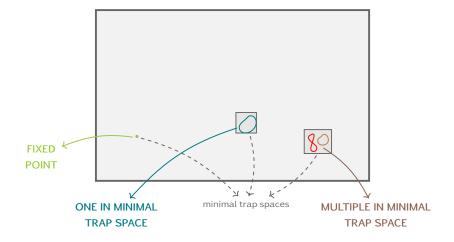


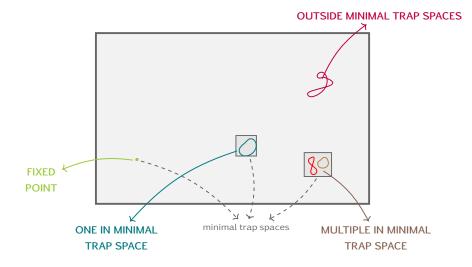


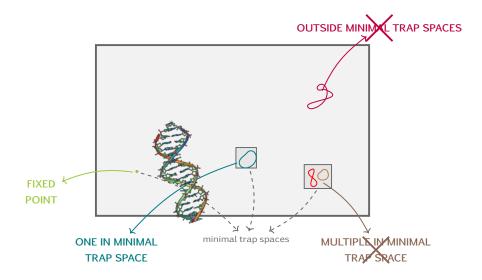




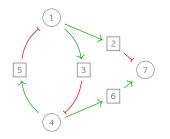






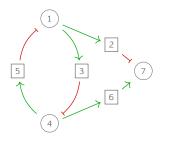


Networks with linear cuts (Naldi, Richard and Tonello 2023)



- √ {2,3,5,6} are *linear* (one regulator, one target)
- ✓ they are a feedback vertex set (if removed, no cycles)
- ✓ intercept all paths from variables with multiple targets to variables with multiple regulators

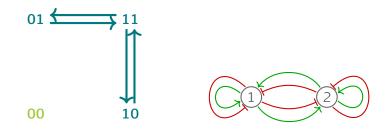
Networks with linear cuts (Naldi, Richard and Tonello 2023)



- ✓ {2,3,5,6} are *linear*(one regulator, one target)
- ✓ they are a feedback vertex set (if removed, no cycles)
- ✓ intercept all paths from variables with multiple targets to variables with multiple regulators
- attractors 1-to-1 with minimal trap spaces
- attractor reachability from initial condition x: if linear variables are "copies" of their regulators, all attractors contained in the minimal trap space containing x are reachable from x

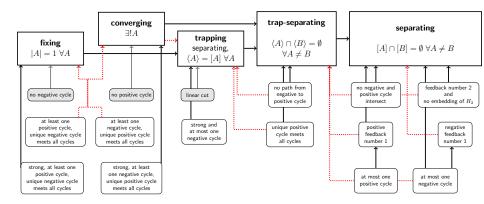
Separating attractors (Richard and Tonello 2023)

▷ conditions for each attractor in a separate subspace/trap space?



Separating attractors (Richard and Tonello 2023)

conditions for each attractor in a separate subspace/trap space?



- ▶ using symbolic computation (AEON): Beneš et al. 2021, 2022
- breaking negative cycles and using trap spaces (mtsNFVS): Trinh et al. 2021, 2021
- ▶ reduction: Tonello and Paulevé 2023

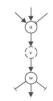
	original				reduced			
Model	nodes	AEON	mtsNFVS	nodes	reduction	AEON	mtsNFVS	
MAPK	53	5.7	28.9 ±5.7 (3 DNF)	10	0.0	0.3	0.7	
IL-6	55	774.6	14.8 ± 1.8	17	0.0	6.0	7.4	
EMT	56	25.6	DNF	17	0.1	0.7	1.4	
T-LGL	58	17.5	2.2	18	0.0	0.9	1.9	
CACC	66	9.3	0.5	11	0.0	0.3	0.7	
AD	74	361.9	0.7	10	0.0	0.4	0.8	
AGS	83	1.7	0.6	2	0.0	0.3	0.7	
CC	87	DNF	8.2 ±3.5	35	0.3	11.1	6.0	
SP	102	DNF	DNF	33	0.1	0.8	1.1	
SIPC	116	DNF	1664.7 ±506.3	32	0.6	6.9	53.7 ±7.4	
DSP	144	DNF	2.3	10	0.0	0.4	0.7	
C3.0	176	DNF	2.1	14	0.1	0.4	1.0	
EP	183	DNF	62.7 ±64.2	25	0.1	0.6	2.4	

Attractors and reduction

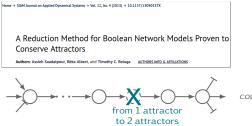
Home → SIAM Journal on Applied Dynamical Systems → Vol. 12, Iss. 4 (2013) → 10.1137/13090537X

A Reduction Method for Boolean Network Models Proven to Conserve Attractors

Authors: Assieh Saadatpour, Réka Albert, and Timothy C. Reluga AUTHORS INFO & AFFILIATIONS

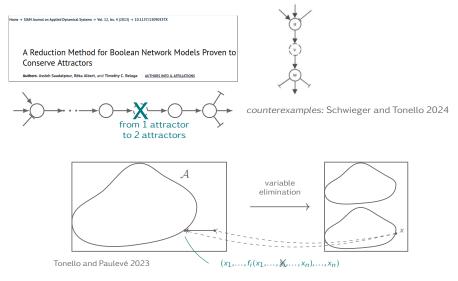


Attractors and reduction

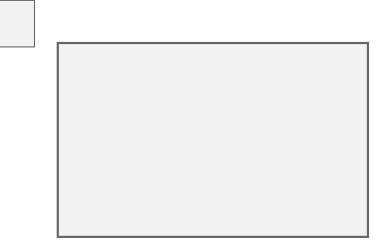


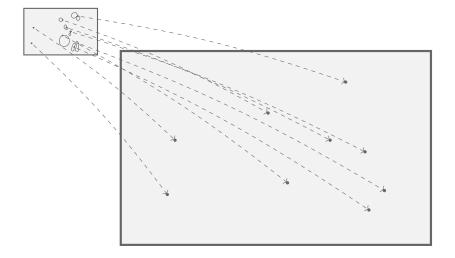
counterexamples: Schwieger and Tonello 2024

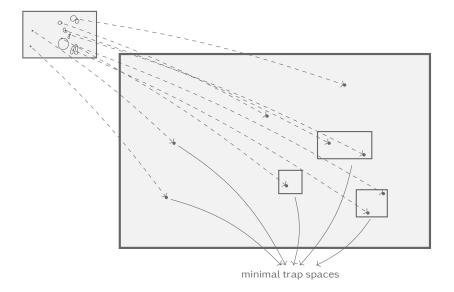
Attractors and reduction

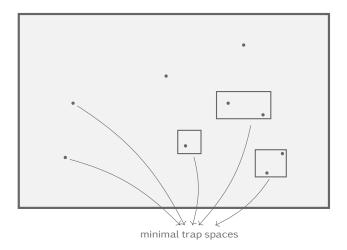


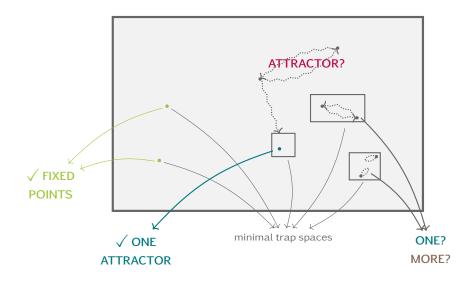
Theorem: states in attractors can be reconstructed from states in attractors of the reduction



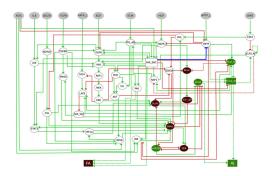








Problem 2: control strategy identification



 $\label{eq:phenotypes} phenotypes $$ e.g. M1 = {AJ_1 = 0, AJ_2 = 0, FA_1 = 1, FA_2 = 0, FA_3 = 0} $$$

node interventions e.g. {ROS = 1, PAK = 0}

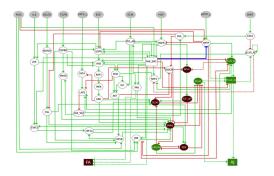
EMT network, from Selvaggio et al., Cancer Research, 2020

identify (minimal number of) node or edge interventions s.t.

- ▷ all attractors contained in a given phenotype
- ▶ no attractors contained in a given phenotype
- ▶ attractors reachable from some given initial conditions ...

▷ ...

Problem 3: marker set identification



P = phenotype variables

for *x* in attractor, $\pi_P(x)$ identifies the phenotype

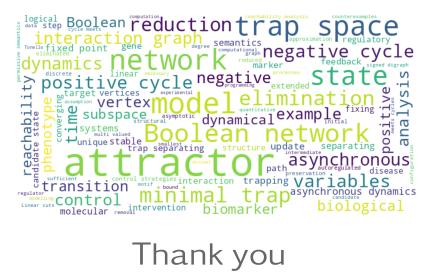
EMT network, from Selvaggio et al., Cancer Research, 2020

identify (minimal number of) *marker variables M*: for all *x*, *y* attractor states

$$\pi_M(x) = \pi_M(y) \implies \pi_P(x) = \pi_P(y)$$

Klarner et al. 2021

The end



elisa.tonello@fu-berlin.de, elisa@tonello.me