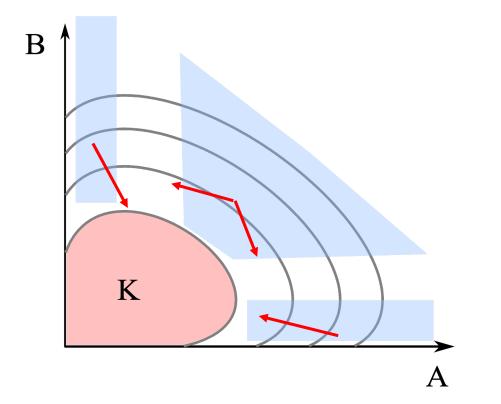
Rare events-driven stability of stochastic chemical reaction systems

Jinsu Kim

Department of Mathematics, POSTECH, Korea

December 17th, 2021 BK21 Four POSTECH Math Workshop

Local behavior vs non-local behavior for stability



- Anderson (2011)
- Anderson-K (2018)
- Anderson-Cappelletti-Nguyen-K (2020)
- And all other studies that used Lyapunov functions

- Brunner and Craciun (2018)

Slow stabilization of protein folding processes

ANNUAL REVIEW OF BIOPHYSICS [Volume 37, 2008, Volume 37,]

Review Article

The Protein Folding Problem

Ken A. Dill^{1,2}, S. Banu Ozkan³, M. Scott Shell⁴, and Thomas R. Weikl⁵

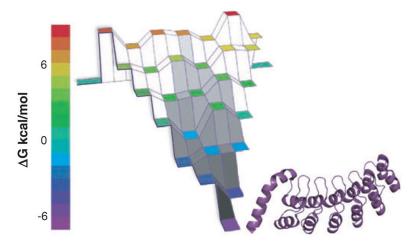


Figure 6.

The experimentally determined energy landscape of the seven ankyrin repeats of the Notch receptor (16,157,209). The energy landscape is constructed by measuring the stabilities of folded fragments for a series of overlapping modular repeats. Each horizontal tier presents the partially folded fragments with the same number of repeats. Reprinted from Reference 157 with permission.

Slow stabilization of protein folding processes

ANNUAL REVIEW OF BIOPHYSICS [Volume 37, 2008, Volume 37,]

Review Article

The Protein Folding Problem

Ken A. Dill^{1,2}, S. Banu Ozkan³, M. Scott Shell⁴, and Thomas R. Weikl⁵

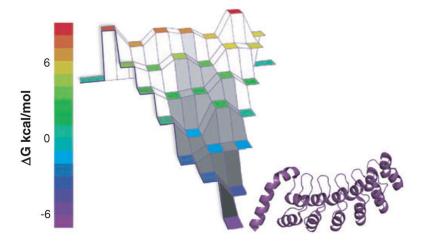
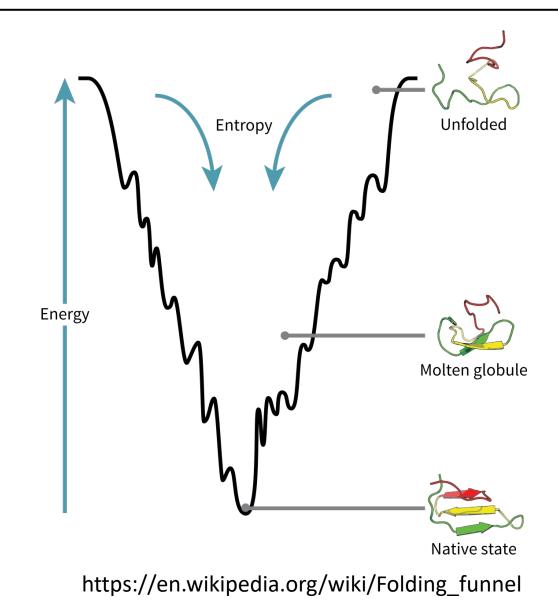


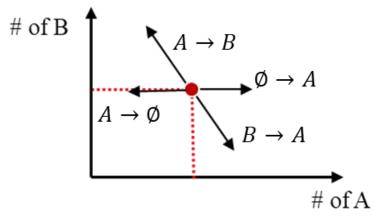
Figure 6.

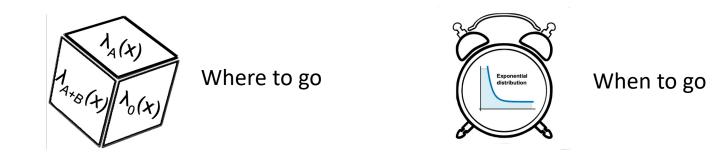
The experimentally determined energy landscape of the seven ankyrin repeats of the Notch receptor (16,157,209). The energy landscape is constructed by measuring the stabilities of folded fragments for a series of overlapping modular repeats. Each horizontal tier presents the partially folded fragments with the same number of repeats. Reprinted from Reference 157 with permission.



Stochastic modeling for reaction networks

$$B \stackrel{\kappa_1}{\underset{\kappa_2}{\Longrightarrow}} A, \quad A \stackrel{\kappa_3}{\underset{\kappa_4}{\Longrightarrow}} \emptyset$$





Stability, (Non) exponential ergodicity and slow mixing

$$B \rightleftharpoons 2B, \quad A+B \rightleftharpoons \emptyset$$

Stability, (Non) exponential ergodicity and slow mixing

$$B \rightleftharpoons 2B, \quad A+B \rightleftharpoons \emptyset$$

1. Positive recurrence (Ergodic, Stability): by zero deficiency

$$\lim_{t \to \infty} P(X(t) = x) = \pi(x) \quad \text{for any } x.$$

(Anderson-Craciun-Kurtz 2010, Anderson-Cappelletti-Koyama-Kurtz 2018)



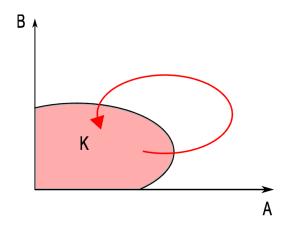
Stability, (Non) exponential ergodicity and slow mixing

$$B \rightleftharpoons 2B, \quad A+B \rightleftharpoons \emptyset$$

1. Positive recurrence (Ergodic, Stability): by zero deficiency

$$\lim_{t \to \infty} P(X(t) = x) = \pi(x) \quad \text{for any } x.$$

(Anderson-Craciun-Kurtz 2010, Anderson-Cappelletti-Koyama-Kurtz 2018)



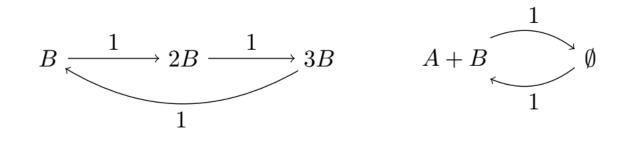
2. Non-exponential ergodicity. (Minjoon Kim-K, 2024+)

Slow mixing

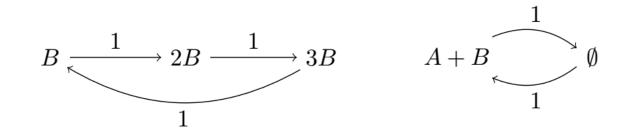
3. $\tau_{\epsilon}^{(n,0)} = \inf\{t \ge 0 : \|P_{(n,0)}(X(t) = \cdot) - \pi(\cdot)\|_{TV} \le \epsilon\} = O(n^2).$

(Louis Fan-K-Chaojie Yuan, 2024+)

Stability, (Non) exponential ergodicity, and slow mixing



Stability, (Non) exponential ergodicity, and slow mixing

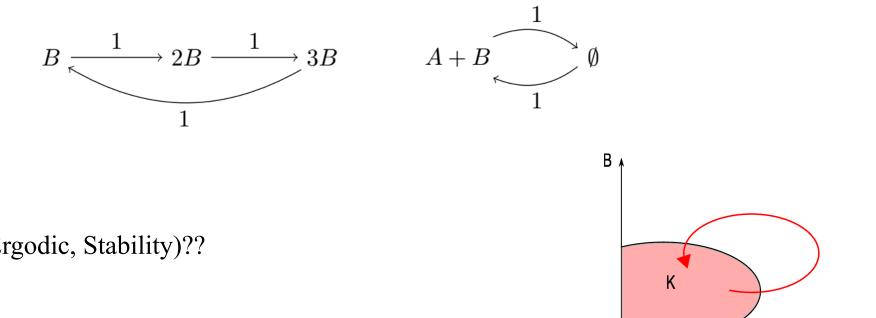


2. Non-exponential ergodicity. (Minjoon Kim-K, 2024+)

3.
$$\tau_{\epsilon}^{(n,0)} = \inf\{t \ge 0 : \|P_{(n,0)}(X(t) = \cdot) - \pi(\cdot)\|_{TV} \le \epsilon\} = O(n^2).$$

(Louis Fan-K-Chaojie Yuan, 2024+)

Stability, (Non) exponential ergodicity, and slow mixing



1. Positive recurrence (Ergodic, Stability)??

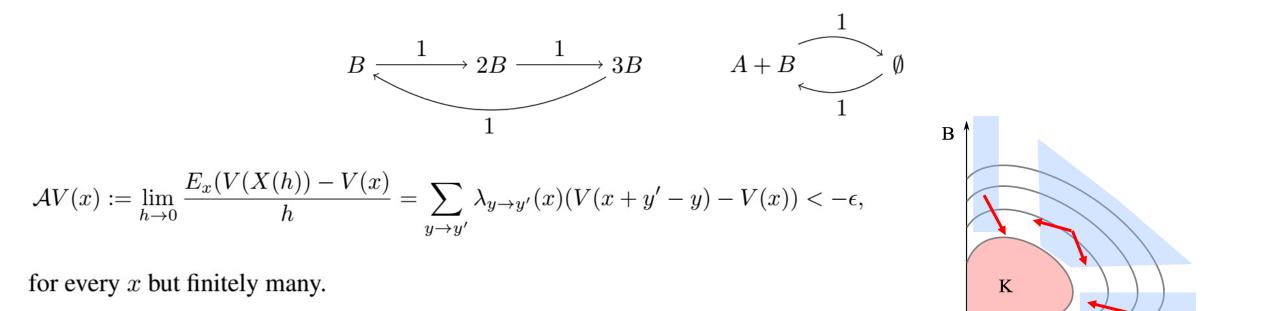
2. Non-exponential ergodicity. (Minjoon Kim-K, 2024+)

3.
$$\tau_{\epsilon}^{(n,0)} = \inf\{t \ge 0 : \|P_{(n,0)}(X(t) = \cdot) - \pi(\cdot)\|_{TV} \le \epsilon\} = O(n^2).$$

(Louis Fan-K-Chaojie Yuan, 2024+)

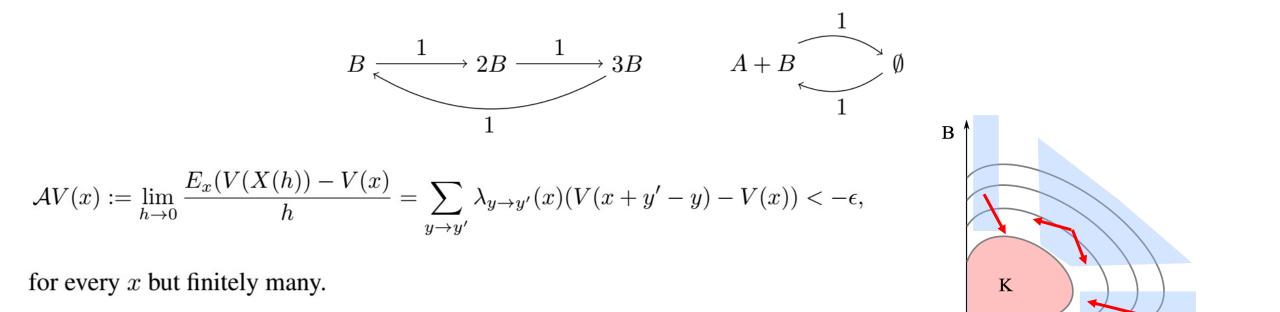
А

Lyapunov function?

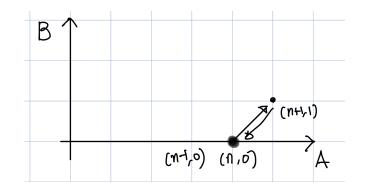


Α

Lyapunov function?



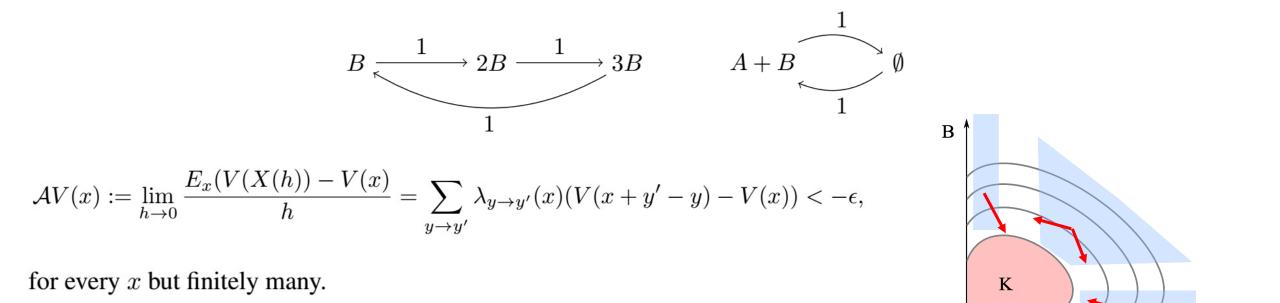
Using the dominant flows at x = (n, 0) and x + (1, 1), we need to construct V(x) such that



7

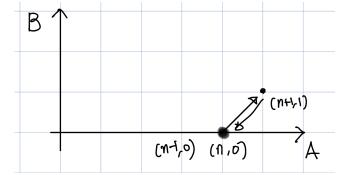
Α

Lyapunov function?



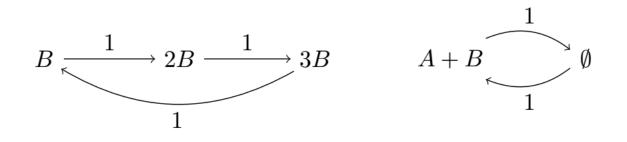
Using the dominant flows at x = (n, 0) and x + (1, 1), we need to construct V(x) such that

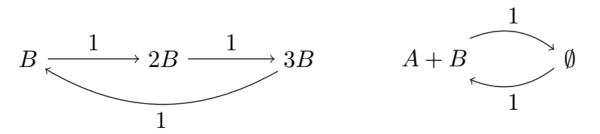
V(x + (1, 1)) - V(x) < 0 and V(x) - V(x + (1, 1)) < 0.



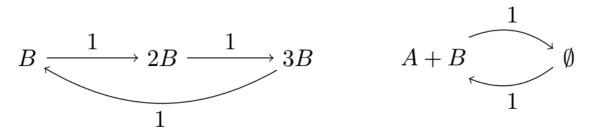
7

Α



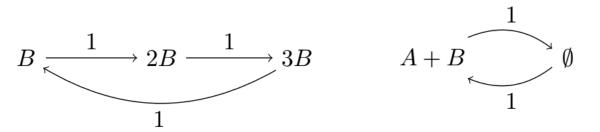


So we think of the 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.



So we think of the 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

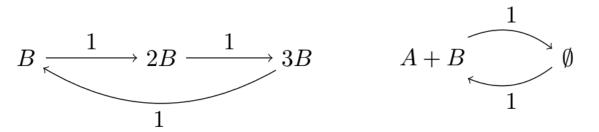
If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent.



So we think of the 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent.

$$P(\widetilde{X}_1(k+1) = x + \eta | \widetilde{X}_1(k) = x) = \frac{\sum_{\substack{y \to y' \\ y' - y = \eta}} \lambda_{y \to y'}(x)}{\sum_{y \to y'} \lambda_{y \to y'}(x)}.$$

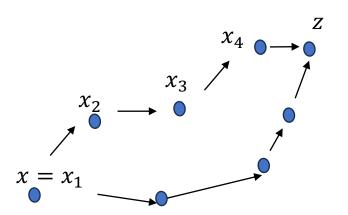


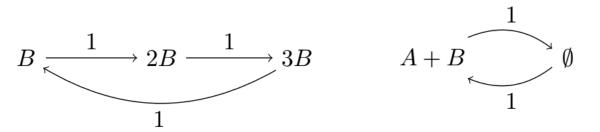
So we think of the 4-steps skeleton process $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent.

$$P(\widetilde{X}_1(k+1) = x + \eta | \widetilde{X}_1(k) = x) = \frac{\sum_{\substack{y \to y' \\ y' - y = \eta}} \lambda_{y \to y'}(x)}{\sum_{y \to y'} \lambda_{y \to y'}(x)}.$$

$$P(\widetilde{X}_4(k+1) = z | \widetilde{X}_4(k) = x) =$$





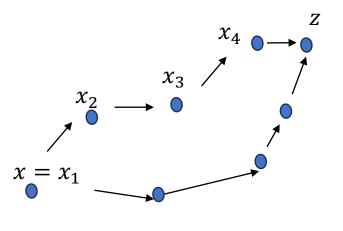
So we think of the 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

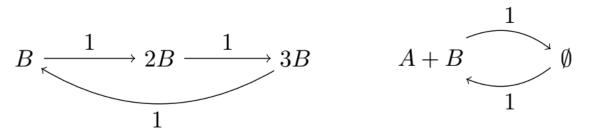
If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent.

$$P(\widetilde{X}_1(k+1) = x + \eta | \widetilde{X}_1(k) = x) = \frac{\sum_{\substack{y \to y' \\ y' - y = \eta}} \lambda_{y \to y'}(x)}{\sum_{y \to y'} \lambda_{y \to y'}(x)}.$$

$$P(\widetilde{X}_4(k+1) = z | \widetilde{X}_4(k) = x) =$$

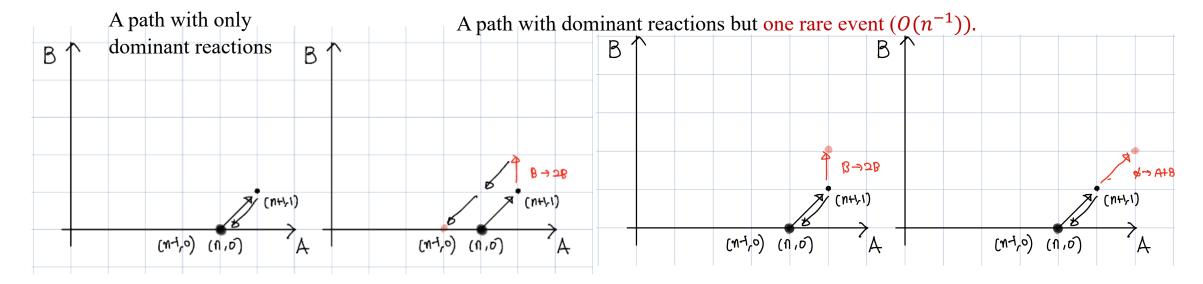
$$\sum_{x \rightsquigarrow z} \frac{\lambda_1(x_1)}{\sum_{y \rightarrow y'} \lambda_{y \rightarrow y'}(x_1)} \frac{\lambda_2(x_2)}{\sum_{y \rightarrow y'} \lambda_{y \rightarrow y'}(x_2)} \frac{\lambda_3(x_3)}{\sum_{y \rightarrow y'} \lambda_{y \rightarrow y'}(x_3)} \frac{\lambda_4(x_4)}{\sum_{y \rightarrow y'} \lambda_{y \rightarrow y'}(x_4)}$$

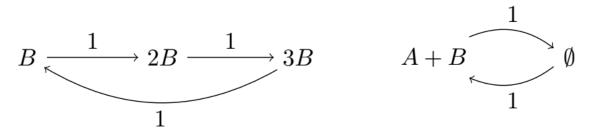




So we think of a 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

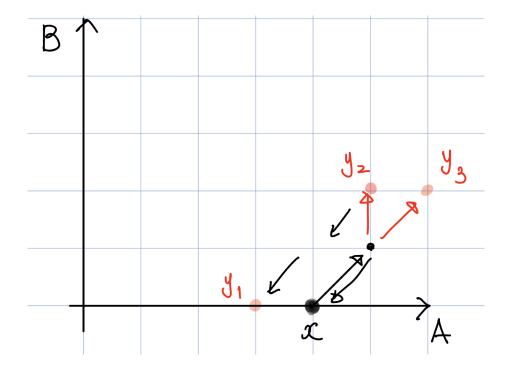
If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent.

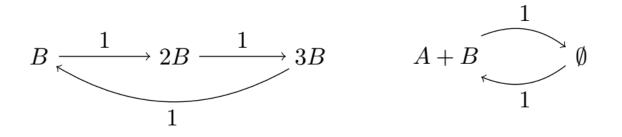




So we think of a 4-steps skeleton process. $\widetilde{X}_4(k) = X(T_{4k})$, where T_k is the k th jump time of X.

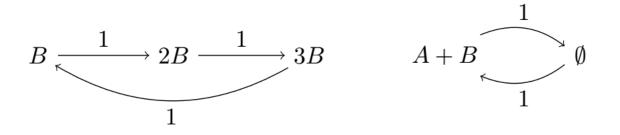
If $\widetilde{X}_4(k)$ is positive recurrent, then X is positive recurrent. (Anderson-Cappelletti-K 2020)



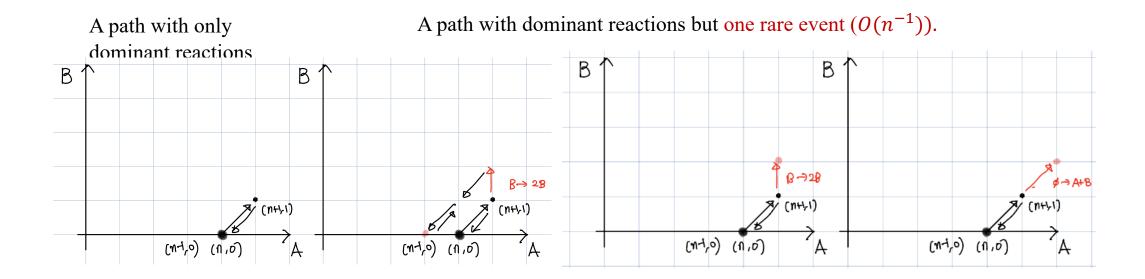


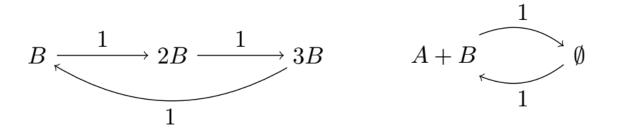
So we think of 10-steps skeleton process.

 $\widetilde{X}_{10}(k) = X(T_{10k})$, where T_k is the k th jump time of X.

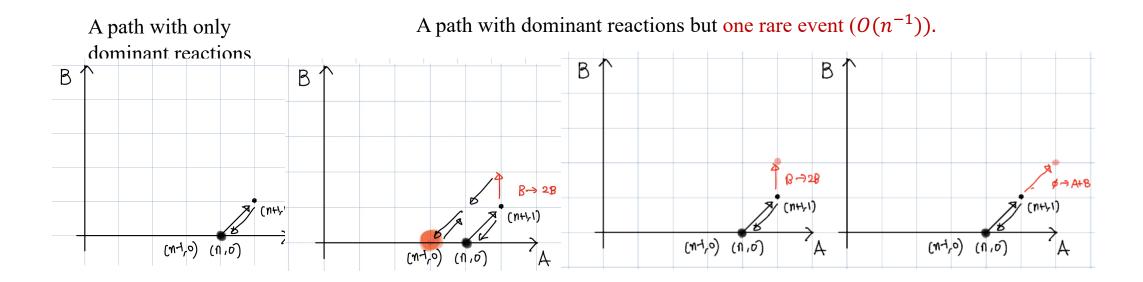


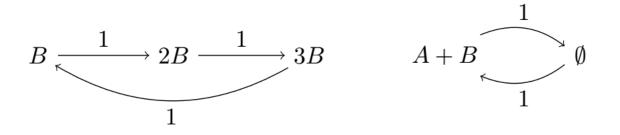
So we think of 10-steps skeleton process.





So we think of 10-steps skeleton process.

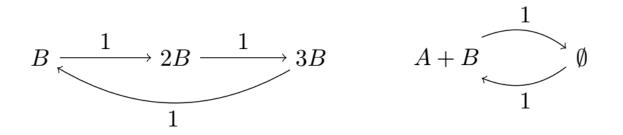




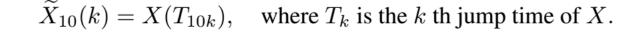
So we think of 10-steps skeleton process.

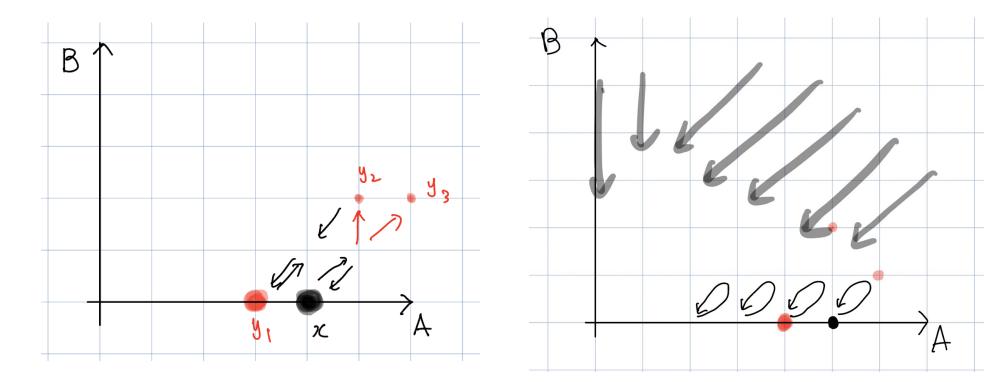


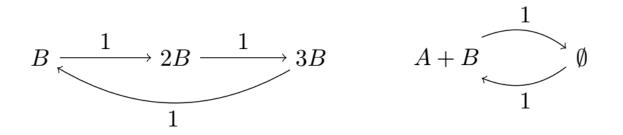
Excepts these five paths of 10 steps, all other paths involve rarer events $(O(n^{-2}))$, hence they are ignorable in the Lyapunov analysis



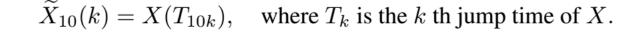
So we think of 10-steps skeleton process.

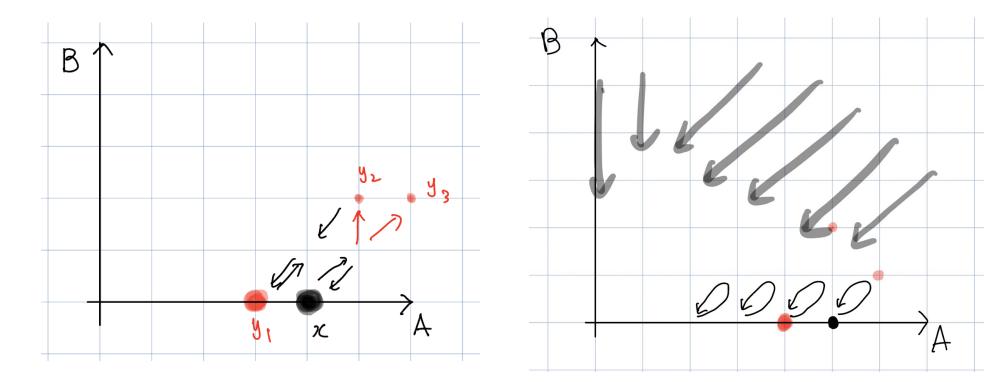






So we think of 10-steps skeleton process.





Theorem. If the transition intensities of X(t) are polynomials, then positive recurrence of \tilde{X}_m implies positive recurrence of X(t) for any m.

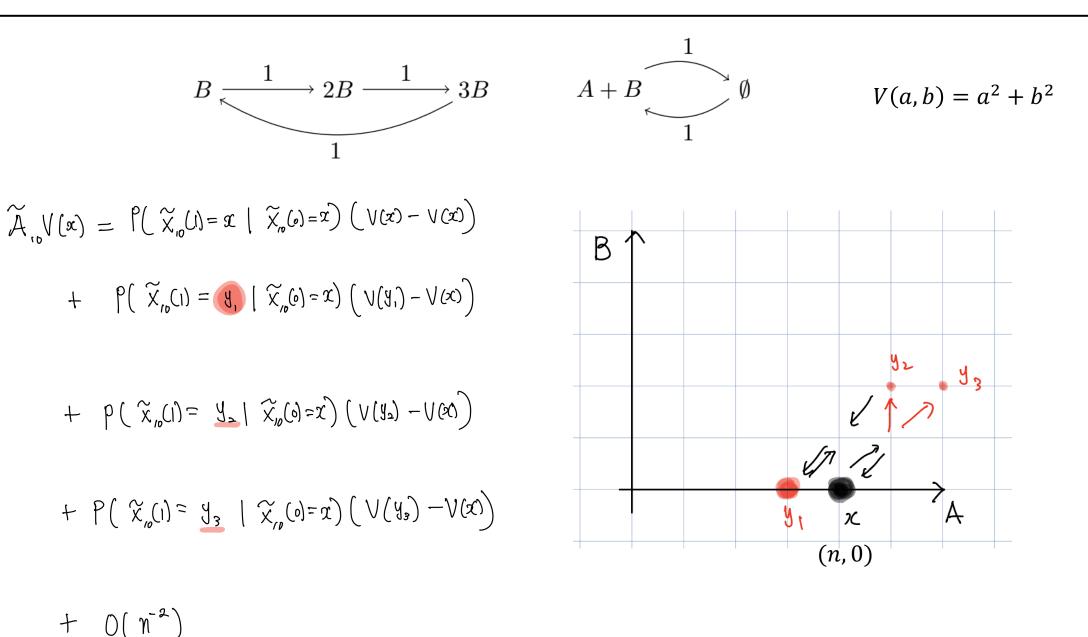
Theorem. If there exists a positive function V(x) such that

(Meyn-Tweedie 92)

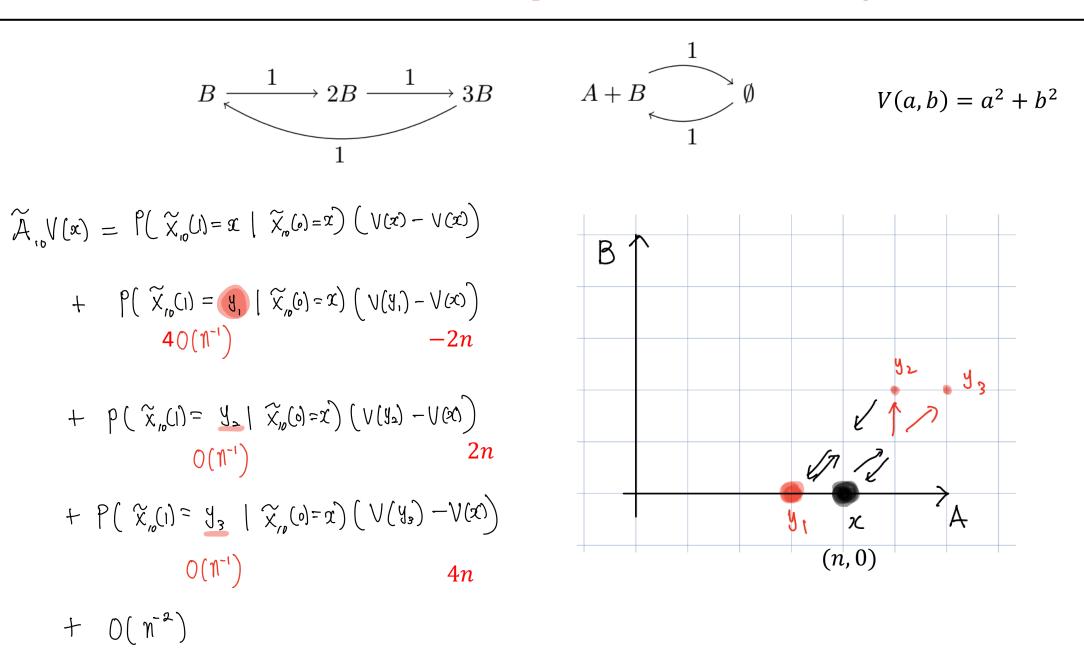
1. $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, and

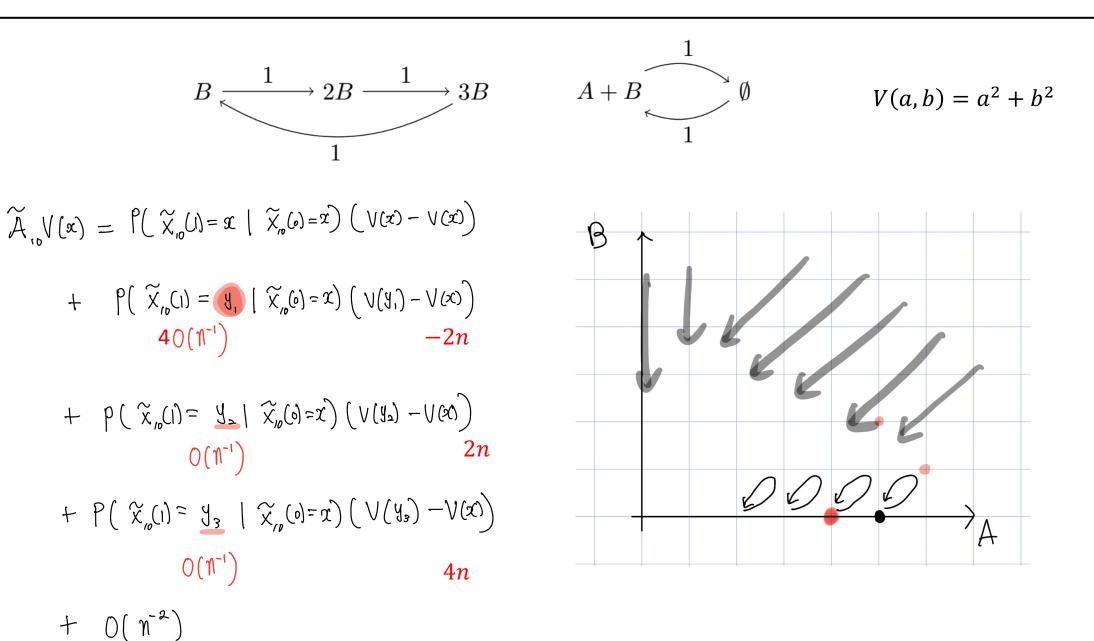
2. $\widetilde{\mathcal{A}}_m V(x) := E(V(\widetilde{X}_m(1)) - V(x)) = \sum_z P\left(\widetilde{X}_m(1) = y | \widetilde{X}_m(0) = x\right) (V(z) - V(x)) < -1$ for all x but finitely many,

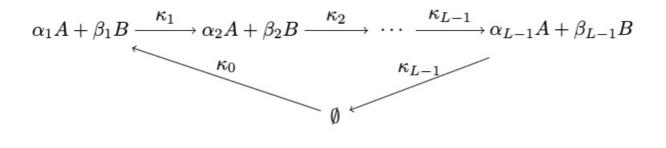
then \widetilde{X}_m is positive recurrent.



14

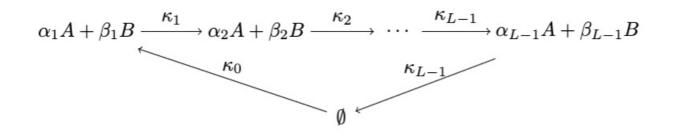






(α_i and β_i are increasing)

+ reactions that are not too strong

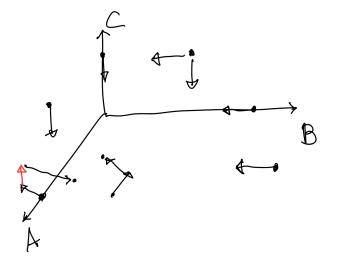


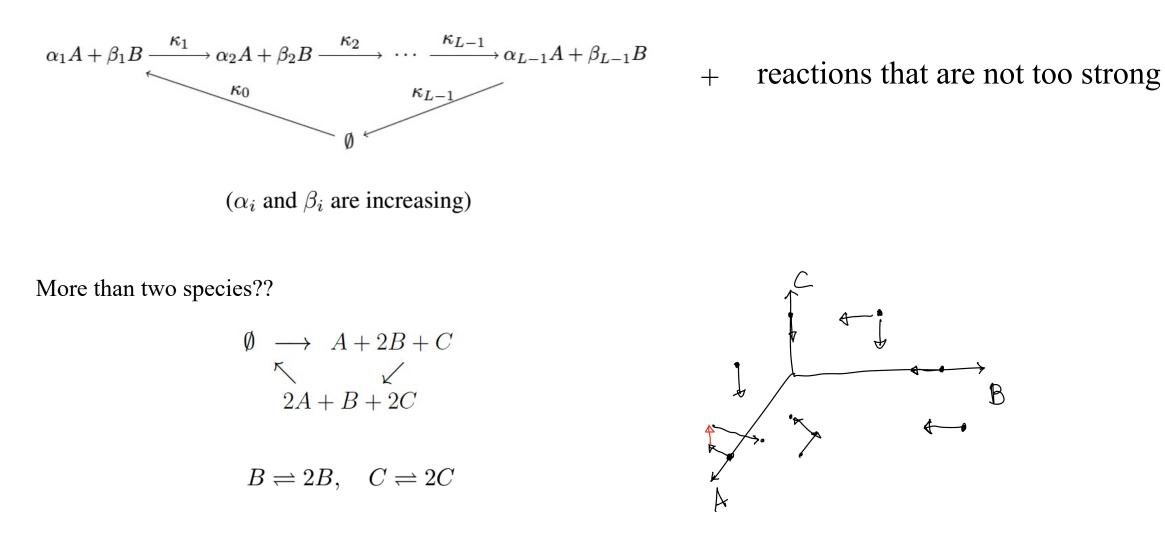
 $(\alpha_i \text{ and } \beta_i \text{ are increasing})$

+ reactions that are not too strong

More than two species??

$$B \rightleftharpoons 2B, \quad C \rightleftharpoons 2C$$





These trapping at boundaries often induce slow mixing. (Minjoon's poster)

Thanks