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Introduction
Prions

Prion is derived from proteinaceous infectious particle.

The prion phenomenon involves

self-propagation of a biological information

through the transfer of structural information

from a misfolded aggregating conformer (PrPSc) in a

prion-state to the same protein in a non-prion state (PrPC).

PrPSc assemblies have the ability to

self-replicate and self-organise (mechanism unknown).

Different phenotype are associated to

structural differences in PrPSc assemblies.
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Introduction
The experiment

Experiments of the depolymerisation kinetics of recombinant

PrP amyloid fibrils in the lab of Human Rezaei:

Static Light Scattering shows surprising, transient oscillations!
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Coagulation-Fragmentation Models
Macroscopic viewpoint

The Formation and Break-up of Clusters/Polymers

assume particles fully described by mass/size y ∈ Y .
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Discrete Coagulation-Fragmentation Models
The Smoluchowski coagulation equation [1916/17]

discrete polymer size/mass i ∈ N, density ci(t) ≥ 0, c = (ci)

dtci(t) = Qi,coag(c, c) +Qi,frag(c)

= Qi,1(c, c)−Qi,2(c, c) +Qi,3(c)−Qi,4(c)

Binary coagulation:

Qi,1(c, c): gain of particles of size i

{i− j}+ {j}
ai−j,j

−−−→ {i}, j < i

Qi,2(c, c): loss of particles of size i

{i}+ {j}
ai,j
−−→ {i+ j}, j ≥ 1.
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Discrete Coagulation-Fragmentation Models
The Smoluchowski coagulation equation [1916/17]

discrete polymer size/mass i ∈ N, density ci(t) ≥ 0, c = (ci)

dtci(t) = Qi,coag(c, c) +Qi,frag(c)

= Qi,1(c, c)−Qi,2(c, c) +Qi,3(c)−Qi,4(c)

Fragmentation:

Qi,3(c): gain of particles of size i

{i+ j}
Bi+jβi+j,i

−−−−−−→ {i}+ {j}, j > 1

Qi,4(c): loss of particles of size i

{i}
Bi−→ all pairs {i− j}+ {j} with j < i.
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Discrete Coagulation-Fragmentation Models
Strong formulation

Discrete in size coagulation-fragmentation models

∂tci = Qi,coag(c, c) +Qi,frag(c), i ∈ N,

Qi,coag =
1

2

∑i−1

j=1
ai−j,j ci−j cj −

∑∞

j=1
ai,j ci cj ,

Qi,frag =
∑∞

j=1
Bi+j βi+j,i ci+j −Bi ci.

Coagulation-fragmentation coefficients

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ∈ N),

B1 = 0, Bi ≥ 0, (i ∈ N),

(mass conservation) i =
∑i−1

j=1
j βi,j, (i ∈ N, i ≥ 2).
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Discrete coagulation-fragmentation models
Weak formulation and conservation of mass

Test-sequence ϕi,

∞
∑

i=1

ϕiQi,coal =
1

2

∞
∑

i=1

∞
∑

j=1

ai,j ci cj (ϕi+j − ϕi − ϕj),

∞
∑

i=1

ϕiQi,frag = −

∞
∑

i=2

Bici

(

ϕi −

i−1
∑

j=1

βi,jϕj

)

.

Conservation of total mass or gelation

ρ(t) =
∞
∑

i=1

ici(t) ≤
∞
∑

i=1

ic0i = ρ0.

P̈ula 12.6.2024 – p. 7/32



The Becker-Döring model
Interaction between monomers and polymers

The Becker-Döring model only considers (de-)polymerisation

with monomers/clusters of size one.

System of a monomer-equation and polymer-equations:







dtc1 = −J1(c)−
∑∞

i=1 Ji(c),

dtci = Ji−1(c)− Ji(c), i ≥ 2

where Ji(c) = ai c1 ci − bi+1 ci+1

The Becker-Döring model is detailed balanced!

The associated entropy functional prevents sustained

oscillatory behaviour.
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Modelling
A bi-monomeric, nonlinear Becker-Döring model

V monomeric species

W conformer species (assumed monomeric for simplicity)

Ci polymers built from i monomers

C1 smallest size of ”active” polymers (one for simplicity)















V +W
k
−→ 2W ,

W + Ci
ai−→ Ci+1, 1 ≤ i ≤ n,

Ci + V
bi−→ Ci−1 + 2V , 2 ≤ i ≤ n.

Key modifications compared to Becker-Döring:

two monomeric species

V monomer induced nonlinear depolymerisation
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Equations and formal properties
A bi-monomeric, nonlinear Becker-Döring model

Define with J0 = Jn = 0, n ∈ N or J0 = 0, n = ∞

Ji(t) = aiw(t)ci(t)− bi+1 v(t)ci+1(t), 1 ≤ i ≤ n− 1.



























dv
dt

= −kvw + v
n
∑

i=2

bici, v(0) = v0,

dw
dt

= −w
n−1
∑

i=1

aici + kvw, w(0) = w0,

dci
dt

= Ji−1 − Ji, ci(0) = c0i , 1 ≤ i ≤ n.

Two conservation laws

Total number of polymers: P0 :=
∑n

i=1 ci(t)

Total mass: Mtot := v(t) + w(t) +
∑n

i=1 ici(t)
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Modelling
The two polymer model n = 2

The simplest model for n = 2

{

dv
dt

= v [−kw + c2] ,

dw
dt

= w [kv − c1] ,

{

dc1
dt

= −wc1 + vc2,

dc2
dt

= wc1 − vc2,

transforms upon using the two conservation laws into a

generalised Lotka-Volterra system for v and w







dv
dt

= v [M − (k + 1)w − v] ,

dw
dt

= w [(M − P0) + (k − 1)v − w] .

with M =Mtot − P0.
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Modelling
The two polymer model: equilibria







dv
dt

= v [M − (k + 1)w − v] ,

dw
dt

= w [(M − P0) + (k − 1)v − w] .

Boundary equilibria:

(v̄, w̄) = (M, 0) → no conformers

(v̄, w̄) = (0,M − P0) (in case M ≥ P0) → only conformers

Positive equilibrium (v∞, w∞) > 0 provided P0 ∈
(

kM
1+k

, kM
)

v∞ :=
P0

k

(

1 +
1

k

)

−
M

k
, w∞ :=

M

k
−
P0

k2
.

Equilibrium (v∞, w∞) is of order 1
k
=: ε.
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Modelling
Rescaling two polymer model

Rescaling

v →
v

k
= εv, and w →

w

k
= εw,

Rescaled equilibrium values

v∞ = P0 (1 + ε)−M, and w∞ =M − εP0,

Rescaled two polymer system







dv
dt

= v [w∞ − w]− ε v [v − v∞ + w − w∞] ,

dw
dt

= w [v − v∞]− εw [v − v∞ + w − w∞] .

Hamiltonian for ε = 0: H(v, w) = v − v∞ ln v + w − w∞ lnw
P̈ula 12.6.2024 – p. 13/32



Analysis
Exponential convergence to positive equilibrium

Theorem: Let P0 ∈
(

kM
1+k

, kM
)

⇒ positive equilibrium (v∞, w∞)

Then, the Hamiltonian is a convex Lyapunov functional with

d

dt
H(v(t), w(t)) = −ε [(v − v∞) + (w − w∞)]2 .

Moreover, for ε sufficiently small, every solution (v(t), w(t))

subject to positive initial data (v0, w0) > 0 satisfies

|v − v∞|2 + |w − w∞|2 ≤ C
(

H0 −H∞

)

e−εrt.

The rate r and constant C depend only on the initial

Hamiltonian value H0 := H(v0, w0) and (v∞, w∞).
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Analysis
Entropy method

Proof: Entropy method for

d

dt
H(v(t), w(t)) = −εp(v, w)2.

Aim for entropy estimate

Ḣ ≤ −εC(H(v, w)−H(v∞, w∞)).

Difficulty due to a degenerate line in (v, w)-phase space:

p = 0 ⇐⇒ w − w∞ = −(v − v∞).

Workaround: Show that trajectories cross an area containing

p = 0 in finite time with finite, positive speed.
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Numerics
Oscillatory mechanism of two polymer model

Trajectories of the monomeric concentrations v and w for the

two-polymer model for k = 10, a = b = 1 and kM
1+k

< P0 < kM .
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Numerics
Oscillatory mechanism of two polymer model

Monotone decay of the Lyapunov functional for the

two-polymer model for k = 10, a = b = 1 and kM
1+k

< P0 < kM
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The finite n ∈ N 2nBD model
Stationary state analysis

Stability regions of the SSs in 1
k
-Mtot

P0
parametric space:

Only conformers

No conformers

Positive equilibria

Case a1 ≤ bn
Mtot

P0

1
k

Mtot

P0
= n

Mto
t

P0

=
n
+
bn
k

Mto
t

P0

= 1 +
a1
k

Figure 1
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The finite n ∈ N 2nBD model
Stationary state analysis

Stability regions of the SSs in 1
k
-Mtot

P0
parametric space:

Only conformers

No conformers

Positive equilibria

Case a1 > bn
Mtot

P0

1
k

M
t
o
t

P
0

=
1
+

a 1 k

Mtot

P0
= n

Mto
t

P0

=
n
+
bn
k
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The n = ∞ model
The linear coefficient case ai = ia, and bi+1 = ib

A strictly positive steady state (v̄, w̄, c̄i≥1) is given by

v̄ =
aP0

k(1− γ)
, w̄ =

bγP0

k(1− γ)
, c̄1 = (1−γ)P0, c̄i≥2 = γi−1(1−γ)P0,

and γ = Mtotk−P0(a+k)
Mtotk+P0b

∈ (0, 1). Introducing M1 =Mtot − v − w

yields for P0 ≪M1 a perturbation of the Ivanova system a















dv
dt

= −kvw + vb(M1 − P0),

dw
dt

= −waM1 + kvw,

dM1

dt
= waM1 − vb(M1 − P0).

aV +W
k
−→ 2W , W +M

a
−→ 2M, M+ V

b
−→ 2V ,
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A bi-monomeric Becker-Döring Model
Normalised coefficients ai = bi = 1

Assume: total mass Mtot = 1, total number of polymers P0 = ε

dv

dt
= −vw + v (ε− c1)

dw

dt
= vw − εw

dcj

dt
= Jj−1 − Jj , j ≥ 1, J0 = 0, Jj = wcj − vcj+1, j ≥ 1

If c1 ≪ 1 the Lotka-Volterra for (v,w): Movie LVandPolymers

Polymers obey a discrete advection-diffusion system:

dcj

dt
=

1

2
(w − v) (cj−1 − cj+1) +

w + v

2
[cj−1 − 2cj + cj+1]
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A bi-monomeric Becker-Döring Model
What happens with c1: The onset of oscillations
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Observation: nonlinear oscillation, far from linearised LV.

Movie Bumpingintoboundary
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A bi-monomeric Becker-Döring Model
Self-similar behaviour of continuous approximation

Four different phases:a

1. Energy remains nearly const. Period O(ε−2),

polymer distribution spreads like ε−1/2

2. Energy decays from O(1) to O(ε), Period O(ε−2),

polymers spread like ε−1/2

about n ∼ ε−1 many oscillations

3. Energy decays from O(ε) to O(ε2), Period O(ε−2),

mainly small polymers oscillate,

about n ∼ ε−1 many oscillations

4. convergence to equilibrium

a[Asymptotic Analysis of a bi-monomeric nonlinear Becker-Döring, system

Doumic, F., Mezache, Velázquez] P̈ula 12.6.2024 – p. 23/32



A bi-monomeric Becker-Döring Model
Self-similar behaviour of continuous approximation

Movie advectionofpolymers

continuous approximation: ck(0) =
ε
L0
Φ
(

k
L0

)

.

PDE advection-diffusion equation for polymers:

∂

∂t
Φ(x, t) +

(w − v)

L0

∂xΦ(x, t) =
v + w

2

1

L2
0

∂2xΦ(x, t)

Period τ for given LV solution (v, w):

τ =
1

L2
0

∫ T (E0)

0

v + w

2
(s)ds =

1

L2
0

d(E0)

ε
= τ(E0, L0).

Assume LV (v, w) given and characterised by energy level E0.
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Asymptotics: phase 2
(v, w) Phase space and energy decay during phase 2

(v, w) Phase space and energy decay during phase 2
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Asymptotics: phase 3
(v, w) Phase space and energy decay during phase 3
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Asymptotics: phase 3
(v, w) Phase space and energy decay during phase 3
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A bi-monomeric Becker-Döring Model
Self-similar behaviour of continuous approximation

Movie advectionofpolymers

Poincaré-type map: solutions after one LV period τ .

Solutions consists of a Dirac at zero with mass m

and a continuous profile ψ(x) for x ≥ 0, ψ(0) > 0.

Iterations of LV periods:





ψn+1

mn+1



 = T





ψn

mn



 =





χ(0,∞)(·) (S(τn)ψn) +mnG(·, τn)

J [ψn] +
mn

2





Need to rescale solution with λn to find self-similar profile:

ϕn(x) = λnψn(λnx)

calculate m and ψ via matching inner and outer solutions
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A bi-monomeric Becker-Döring Model
Self-similar behaviour of continuous approximation

Inner solution: Non-local problem for approximation profile

ψn

(√

τ
(n)
∗ ξ

)

≃ U (ξ) , mn ≃

√

τ
(n)
∗ M , τ (n)∗ =

D (E, ε)

(Ln)
2

where U and M solve the following equations

U (ξ) =

∫ ∞

0

G (ξ − ζ; 1)U (ζ) dζ +MG (ξ; 1) , ξ > 0

M

2
=

∫ 0

−∞

dζ

∫ ∞

0

G (ζ − ξ; 1)U (ξ) dξ,

with the scaled boundary condition

U (∞) =
2

π
.
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A bi-monomeric Becker-Döring Model
Asymptotics: Inner solution numerics
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Another bi-monomeric Becker-Döring Model
Only small fraction of nonlinear depolymerisation



























V +W
k
−→ 2W

W + Ci
ai−→ Ci+1 1 ≤ i ≤ n

Ci + V
bi−→ Ci−1 + 2V 2 ≤ i ≤ n

Ci+1
βi
−→ Ci +W 1 ≤ i ≤ n

Simulation: k = 0.3, ai = 2, bi = 0.1, βi = 1.9, n = 50.
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A bi-monomeric, nonlinear BD model
Conclusions

The models with n ≥ 3 feature nonlinear oscillations as

interaction of monomer species to polymer hierarchy.

Biologist found experimental evidence of the suggested

nonlinear depolymerisation

Observed oscillatory behaviour should serves as hint

towards unraveling the biological machinery.

Preprint on asymptotic description in 2 weeks

THANK YOU VERY MUCH!

P̈ula 12.6.2024 – p. 32/32


	Introduction
	Introduction
	Coagulation-Fragmentation Models
	Discrete Coagulation-Fragmentation Models
	Discrete Coagulation-Fragmentation Models

	Discrete Coagulation-Fragmentation Models
	Discrete coagulation-fragmentation models
	The Becker-D"oring model
	Modelling
	Equations and formal properties
	Modelling
	Modelling
	Modelling
	Analysis
	Analysis
	Numerics
	Numerics
	The finite $nin N $ 2nBD model
	The finite $nin N $ 2nBD model
	The $n=infty $ model
	A bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric Becker-DÃ¶ring Model
	Asymptotics: phase 2
	Asymptotics: phase 3
	Asymptotics: phase 3
	A bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric Becker-DÃ¶ring Model
	Another bi-monomeric Becker-DÃ¶ring Model
	A bi-monomeric, nonlinear BD model

