Modeling microalgae growth: translating Monod and logistic ODE to **BioChemical Reaction Network**

Mélanie Pietri^{1,2}, Raphaël Honigsberg^{1,3}, Thomas Rodet⁴, Sakina Bensalem¹, Matthias Függer², Bruno Le Pioufle¹, Thomas Nowak^{2,5}

¹Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, France ²Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France ³Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, France ⁴Université Paris-Saclay, ENS Paris-Saclay, CNRS, Satie, France ⁵Institut Universitaire de France

Microalgae to produce valuable compounds

Microalgae offer significant potential to produce valuable compounds in industry (lipids, pigments, biopolyesters ...).

0₂

 H_2O

Growth conditions

16 flasks with different dilution conditions incubated. were Microalgae were rinced twice with distilled water before seeding

Wild type Chlamydomonas reinhardtii

CONTEXT 💋

Chlamydomonas reinhardtii interacting with its natural environment [1]

Open pond and photobioreactor for microalgae industrial culture Focus on photosynthesis process and valuable compounds from microalgae (adapted from [2])

Sugar

Biofuels

Proteins

them in flasks. TAP medium was diluted by 2^i for $i \in [0,4]$ with distilled water. The experiment were inspired from [3].

Distribution of flasks in incubator

Cell medium: V = 50 mLLight TRIS acetate 15% setpoint phosphate (TAP) H = 7.23 $T = 25^{\circ}C$

> Distribution of light in the incubator at 400 mm from the LEDs source

 $\Omega = 100 \text{ rpm}$

13 µW	15 μW	15 μW	13 µW
17 μW	19 µW	19 µW	17 μW
17 μW	18 µW	18 µW	15 μW
11 μW	12 μW	15 μW	11 μW

Modeling microalgae growth

Pigments

Polysaccharides

Biopolyester

Bioactive compounds

Various growth models, including mechanistic ones using ODEs, have been studied, but complexities emerge with multiple resource considerations. We propose a multi-resource Bio-Chemical Reaction Network (BioCRN) model for microalgae growth, quantifying the impact of light and nutrient concentration on biochemical kinetics through microalgal cellresource reactions.

Lubricants

Optical density

Optical density (OD) at 750 nm were measured in 1 mL cuvettes at a starting $OD_0 = 0.015$ for each culture. The culture was monitored during 18 days.

MODELING

 $\frac{\mathrm{d}N}{\mathrm{d}t}(t) = r \cdot \left(1 - \frac{N(t)}{\Gamma}\right) N(t)$

DATA PROCESSING

Estimation of parameters

 $\mu, \xi_c, \lambda_L, \Gamma, \alpha$ and K were estimated on experimental data on *C.reinhardtii* - see **1**) - and Monoraphidium sp. from [3].

1) Mean growth curves with standard deviation per triplicates for C. reinhardtii at each dilution of the cell medium and estimated ODE model.

2) Estimated parameters in function of initial cell medium dilution and light intensity. Blue curves estimated on data from [3] on are Monoraphidium sp. and black curves are estimated on C. reinhardtii data.

Two scale interpretations

 $r(L,C) = \mu \cdot r_{light}(L) \cdot r_{medium}(C)$ References [1] Systematic characterization of gene function in the photosynthetic alga *Chlamydomonas reinhardtii* – F. Fauser et al. (2022) [2] Dossier de presse - Microalgues, de la recherche à l'industrie - CEA Cadarache (2020) [3] A parametric logistic equation with light flux and medium concentration for cultivation planning of microalgae - K. Kambe et al. (2022)

 $\begin{pmatrix} r_{medium}(C) = \frac{C(t)}{\xi_c + C(t)} \\ \frac{dC}{dt}(t) = -\alpha \cdot \frac{dN}{dt}(t) \end{cases}$

Acknowledgements

Jeff Audibert, research engineer at ENS Paris-Saclay

SPT - CRN 9 - 15 June 2024 Pula, Sardinia, Italy