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The Reduction Phenomenon: brief history

• ”Increased dispersal (or mutation, or recombination) reduces
overall growth.”

• First observed in theoretical models by Feldman and colleagues
(early ’70ies) and called the Reduction Principle.

• Proved by Karlin (’76, ’82), referred to as Reduction Phenomenon.

• Many distinct proofs have been developed over the years, for a
wide variety of models (finite and infinite-dimensional, discrete
and continuous-time, local and non-local dispersal). In some
models, variability in dispersal is captured by a parameter. In other
models, two populations with distinct dispersal characteristics (but
otherwise equal) are placed in the same environment and we
analyze their fate; this is an adaptive dynamics type of approach.
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The Reduction Phenomenon: brief history

• This talk focuses on a couple of proofs of the Reduction
Phenomenon, for just one of the simplest models.

• What will not be addressed here: If the Reduction Phenomenon
holds, it raises an important evolutionary question:

Why have dispersal strategies evolved?

Indeed, if increased dispersal lowers overall growth, there should
be no advantage to disperse more.

• This suggests that our models, even though they look reasonable,
are too simplistic. It calls for including important processes into
our model which have thus far been neglected but which may
explain why dispersal strategies have evolved.
[Compare this to the efforts made to modify models exhibiting
the Competitive Exclusion Principle or explain the evolution of
cooperation etc]

2



Karlin’s Reduction Phenomenon1

xk: n-dimensional vector whose components are the amounts of a
species at n spatial locations at time k = 0, 1, ....

xk+1 = [(1− t)I + tP ]Dxk

• D: diagonal and Dii > 0 for all i = 1, . . . , n. (local growth/decay)

• P : column stochastic (PT1 = 1) and irreducible (dispersal
pattern)

• t in (0, 1) (dispersal intensity)

Thm t→ r(t) := r ([(1− t)I + tP ]D ) is non-increasing.
In fact, r(t) is decreasing, unless D = aI, some a > 0, and then
r(t) = a.

1For any matrix A, r(A) := {|λ| |λ is e-value of A} denotes its spectral radius.
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Start of proof of Karlin’s Thm

Set A(t) = [(1− t)I + tP ]D, a smooth matrix in t.
By PF and IFT Thm’s, we find unique, smooth, positive e-vectors
u(t) of A(t) and v(t) of AT (t), for smooth, positive e-value r(t):

A(t)u(t) = r(t)u(t) , AT (t)v(t) = r(t)v(t), and

〈v(t), u(t)〉 = 1, for all t in (0, 1).

Differentiating the identity r(t) = 〈v(t), A(t)u(t)〉 yields:

ṙ(t) = 〈v(t), Ȧ(t)u(t)〉 =
1

t
(r(t)− 〈v(t), Du(t)〉)

Done if we can show that for all t in (0, 1),

r(t) ≤ 〈v(t), Du(t)〉, and

equality holds in ≤ only if D = aI for some a > 0.
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Proof 1: Based on Donsker-Varadhan-Friedland variational formula

Notation:

• Σ = {x ≥ 0 | 〈1, x〉 = 1}, all probability vectors.

• For vectors x and y > 0, xy has components xi/yi.

• For vectors x and y, x ◦ y has components xiyi.

Thm (DFV variational formula). Let A be non-negative and
irreducible, and u > 0, v > 0 satisfy Au = r(A)u, ATv = r(A)v and
〈v, u〉 = 1. Then

1. r(A) = supp∈Σ infx>0〈p, Axx 〉.

2. Supremum in 1. is achieved for p = u◦v: r(A) = infx>0〈u◦v, Axx 〉.

3. Infimum in 2. is achieved only for positive scalar multiples of u.
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Proof 1: Back to proof of Karlin’s Thm, using DFV formula

Wish to show: r(t) ≤ 〈v(t), Du(t)〉, for t in (0, 1), and equality holds
only if D = aI for some a > 0.
By DVF formula, and as Pπ = π for some π > 0,

r(t) = inf
x>0
〈u(t) ◦ v(t),

[(1− t)I + tP ]Dx

x
〉

≤ 〈u(t) ◦ v(t),
[(1− t)I + tP ]DD−1π

D−1π
〉

= 〈u(t) ◦ v(t),
π

D−1π
〉

= 〈v(t), Du(t)〉, for all t in (0, 1)

Equality holds in ≤ only if D−1π is e-vector of [(1− t)I + tP ]D for
r(t), for all t in (0, 1) =⇒ π = r(t)D−1π, all t in (0, 1). Then
r(t) = a for some a > 0, and Dπ = aπ =⇒ D = aI.
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Proof 2: Based on a linear programming result by Kirkland etal (’06)

Fix u > 0 and v > 0 with 〈v, u〉 = 1 and set d = v ◦ u. Define

P(u, v) = {X ≥ 0 |Xu = u, XTv = v}, and f(X) = 〈1, Xd〉.

Note: P(u, v) is 6= ∅, compact, convex polyhedron, and f is linear.

Lemma (Kirkland, Li & Schreiber ’06)

f(X)≥ 1, for all X in P(u, v),

and equality holds in≥ only if X is column stochastic (i.e. XT1 = 1).

Pf (sketch): Let D = {X ≥ 0 |X1 = 1 = XT1}, doubly-
stochastic matrices. Define invertible L : Rn×n → Rn×n by
L(X) = V −1XU−1 + I −D−1. Then one can show:

P(u, v) ⊆ L(D), hence min
X∈L(D)

f(X) ≤ min
X∈P(u,v)

f(X)
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Proof 2: Based on linear programming result by Kirkland etal (’06)

Pf (cont.)
min

X∈L(D)
f(X) ≤ min

X∈P(u,v)
f(X)

Fact: D = convex hull of permutation matrices.
(Birkhoff-von Neumann Thm)

⇒ L(D) = convex hull of images of permutation matrices under
L. For any permutation matrix P , we evaluate

f(L(P )) = 1− n+
n∑
i=1

vσi
vi

= 1 + n

(
1

n

n∑
i=1

vσi
vi
− 1

)
≥ 1,

by the AM-GM inequality. Conclude 1≤ minX∈P(u,v) f(X).

To show that equality holds in ≤ only if X is column stochastic
requires a bit more work; but it only exploits that equality in the
AM-GM inequality holds only if all the positive numbers are equal.
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Proof 2: Back to proof of Karlin’s Thm, using linear programming

Corollary: Let X ≥ 0, and assume r(X) > 0 and u > 0 and v > 0
satisfy Xu = r(X)u, XTv = r(X)v and 〈v, u〉 = 1. Then

r(X)≤〈1, Xv ◦ u〉,

and equality in ≤ holds only if all column sums of X equal r(X).

Recall: Wish to show that r(t) ≤ 〈v(t), Du(t)〉, for t in (0, 1),
and equality holds only if D = aI for some a > 0.
For all t in (0, 1), the Corollary implies that

r(t)≤〈1, [(1−t)I+tP ]Dv(t)◦u(t)〉 = 〈1, Dv(t)◦u(t)〉 = 〈v(t), Du(t)〉,

and equality holds in ≤ only if all column sums of [(1− t)I + tP ]D
are equal to r(t). The ith column sum is Dii, hence D = aI for
some a > 0 and r(t) = a.
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Summary

We presented 2 proofs of Karlin’s Reduction Phenomenon.

1. The first one is based on the DVF variational formula, an inherently
nonlinear result.

2. The second proof is based on a linear programming result.
(To be fair, we also use the nonlinear AM-GM inequality, and the
Birkhoff-von Neumann Thm.)
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Bonus: Proof of the DVF variational formula

Define B = {A ≥ 0 |A1 = AT1}, all balanced non-negative matrices.
Lemma (Friedland & Karlin ’75) If A ∈ B, then

〈1, Ax
x
〉≥ 〈1, A1〉, for all x > 0.

If in addition, A is irreducible, then equality holds in ≥ only if
x = α1, for some α > 0.

Pf: Since A ∈ B, there is a diagonal D with Dii > 0 for all i,
a > 0 and S ∈ D:

A+D = aS
From this, if Lemma holds for matrices in D, it holds for matrices in
B: Indeed, for all x > 0,

〈1, Ax
x
〉 = a〈1, Sx

x
〉 − 〈1, D1〉

≥ a〈1, S1〉 − 〈1, D1〉 = 〈1, A1〉
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Bonus: Proof of the DVF variational formula

Assume S ∈ D. The map x → 〈1, Sxx 〉 is homogeneous of degree
zero, so we may restrict x > 0 to

Dom =

{
x > 0 |

n∏
i=1

xi = 1

}
.

For x in Dom, by the AM-GM inequality, and Jensen’s inequality,

1

n
〈1, Sx

x
〉≥

(
n∏
i=1

(Sx)i
xi

)1/n

=

(
n∏
i=1

(Sx)i

)1/n

≥ 1, since

ln

(
n∏
i=1

(Sx)i

)
=
∑
i

ln

∑
j

Sijxj

≥∑
i

∑
j

Sij ln(xj) =
∑
j

ln(xj) = 0.
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Bonus: Proof of the DVF variational formula

Thus, for S ∈ D we proved that 1
n〈1,

Sx
x 〉 ≥ 1 for all x > 0, hence

〈1, Sx
x
〉 ≥ n = 〈1, S1〉

If in addition, S ∈ D is irreducible, then equality holds in ≥ only if
all (Sx)i

xi
are equal. Then there is some β > 0 such that Sx = βx.

But as S ∈ D is irreducible, the PF Thm implies that β = r(S) = 1
and that x = α1 for some α > 0.
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Bonus: Proof of the DVF variational formula

Thm (DFV variational formula). Let A be non-negative and
irreducible, and u > 0 and v > 0 satisfy Au = r(A)u, ATv = r(A)v
and 〈v, u〉 = 1. Then
1. r(A) = supp∈Σ infx>0〈p, Axx 〉.
2. Supremum in 1. is achieved for p = u◦v: r(A) = infx>0〈u◦v, Axx 〉.
3. Infimum in 2. is achieved only for positive scalar multiples of u.

Pf: For all p ∈ Σ, infx>0〈p, Axx 〉 ≤ 〈p,
r(A)u
u 〉 = 〈p, r(A)1〉 = r(A)

⇒ sup
p∈Σ

inf
x>0
〈p, Ax

x
〉 ≤ r(A) (1)

Claim: For all x > 0,

〈u ◦ v, Ax
x
〉≥ r(A), (2)

14



and equality holds in ≥ only if x = αu for some α > 0.

Pf of Claim: Note that V AU1 = r(A)u ◦ v = (V AU)T1, so
V AU ∈ B, hence by the Lemma of Friedland & Karlin,

〈u ◦ v, Ax
x
〉 = 〈1, (V AU)x/u

x/u
〉 ≥ 〈1, V AU1〉 = r(A),

and irreducibility of V AU implies that equality holds in ≥ only if
x/u = α1 for some α > 0. That is, only if x = αu for some α > 0.
We proved items 2 and 3. Let’s finish by proving item 1.

Since we get equality in (2) for x = u, this implies that

sup
p∈Σ

inf
x>0
〈p, Ax

x
〉 ≥ inf

x>0
〈u ◦ v, Ax

x
〉 = r(A).

Together with (1), this inequality establishes the DFV variational
formula.
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Thank you!
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