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1. Reaction networks:
stoichiometry and kinetics
dynamical system

2. Equilibria:
existence/uniqueness
results depending on network properties or not

3. Abstract framework:
parametrized systems of generalized polynomial equations
“positive algebraic geometry”
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Every power-law dynamical system

(and hence every polynomial dynamical system)

arises from a

reaction network with (generalized) mass-action kinetics.
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linkage classes: components of graph
graph weakly reversible: components strongly connected
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Modern definition:
reaction network = ( graph, map )
map: vertices — complexes

Example:

A+B .2 4:@5
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M & Regensburger (2014). Generalized Mass-Action Systems and Positive Solutions of
Polynomial Equations with Real and Symbolic Exponents, Proceedings of the 16th
International Workshop Computer Algebra in Scientific Computing (CASC)
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Classical vs. modern

Example:
0=2A=22A=2A+B=2B

Feinberg (1987). Chemical reaction network structure and the stability of complex
isothermal reactors — I. The deficiency zero and deficiency one theorems, Chemical
Engineering Science

Subnetworks:
0=A=2A 2A=A+B&=2B

Not a network in the sense of the classical definition,
but in the sense of the modern definition.
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Stoichiometry - what happens in a reaction

Examples of elementary (chemical) reactions:
A—-B, A+B—-C, A+B—-C+D, 2-A—=B,

complexes of at most two molecular species

General (or composite) reaction:
a-A+b-B+c-C+... — a-A4+b-B+c-C+...

Autocatalysis:

chemistry epidemiology ecology
A+B—2-A [+S—2-1 F+R—2-F
not in one step | ... infected F ... fox

S ... susceptible R ... rabbit

M, Flamm, Stadler (2022), What makes a reaction network "chemical”?,
J of Cheminformatics
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Proper part of a reaction network must be conservative!
Example:
0=A=22A=2A+B=2B

in/outflow “reactions”: 0 = A
proper chemical reactions: A= 2A = A+B=2B

A 2 2A cornucopia A+ XZ2A

Futile cycles must not contain irreversible reactions!

o) (=[]
\ l

Example:

perpetuum mobile
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y—y  with g, € RY.
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Stoichiometry - more abstractly

With n species A, B, C, ..., we write
a-A+b-B+c-C+... — a-A+b .-B+-C+...

as
y—y  with g, € RY.

Reaction vector:

Yy -y
For example, we write
1A+1B—=1C
as
A /1 0 -1
B(1 0 -1
y—y with y= CO], ¢/ =|1[, ¢ —y=[1
- \0 0 0
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Kinetics - how fast a reaction happens

Rate of reaction y — 1/:
Ty—sy () >0

with concentrations/fractions of species x € RZ

Results for
@ ‘“general” kinetics
@ monotone, power-law, Michaelis-Menten, ...
@ mass-action kinetics (MAK):

Tysy (€)= kysy 2

monomial ¥ = [, (a;)¥

for example, for
1A+1B—C,
we have

1.1
TA+B—C(T) = katBoC Ta Tg-
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Reaction network (G, y):

graph G=(V,E),V ={1,...,m}, E CV x V, £ connected components
map y: V — RY complexes

Edge (i — ') € E (via map y) represents reaction y(i) — y(i').
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Formal definitions

Reaction network (G, y):

graph G=(V,E),V ={1,...,m}, E CV x V, £ connected components
map y: V — RY complexes
Edge (i — ') € E (via map y) represents reaction y(i) — y(i').

Kinetic system (G, y,r):

map r: RS — Rg reaction rates
Reaction y(i) — y(i') has rate r;_,;(x).
dx . .
dar Z (y(zl) - y(z)) Tisir ()
i—i'eR
Mass-action system (G, y, k): map k: £ — R
dx

dt >yl = y(@)) ks 2

i—i'el



1<:>2 —1<:>@o
'\ l
3

12 21 23 31 45 54 [ki,zaze
TA A —1 1 2 —1 —1 1 kgl xXc

d | zs — Nrp(z) = Bl -1 1 0 1 0 0 kas ¢
dt lzc| ="~ c| 1 -1 -1 0 0o o k31 (za)?
Tp D 0 0 0 0 1 -1 k45 A

ksa xp

stoichiometric matrix N, rate vector r(x)



Example with MAK

)= {e=p)

12 21 23 31 45 54 [k zaze
A A —1 1 2 —1 —1 1 ]Cgl xXc
i rB — Nr (x) _ B -1 1 0 1 0 0 ]{223 xTc
dt |ac ]~ """ T cl 1 -1 -1 0 o0 o0 k31 (za)?
D D 0 0 0 0 1 -1 k45 A
ks4 Tp
stoichiometric matrix N, rate vector r(x)
1 2 3 4 5
A/1 0 2 1 0 —ki12 ko1 koir 0 O TATB
ki —(ka1+k23) 0 O 0 xc
dx v Bl]1 00 0 O 2
— YAk.CC = 0 k23 —kzl 0 0 (CL’A)
dt c{o 1 0 0 o0
p\o 00 01 0 0 0 —kas kss A
0 0 0 ka5 —ksa xp
Y

complex matrix Y, Laplacian matrix Ay, monomial vector x



Important objects

‘l—f= > (W) = y(@) risi (@) = Y r(x)

i—i'eE N
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Important objects

Z—f= > (W) = y(@) risi (@) = Y r(x)

Stoichiometric subspace:
S =im(YIg)

Stoichiometric class (invariant set):
dz

E €S, ﬂf(t) El‘(O)-l—S

(Stoichiometric) deficiency:
d =dim(kerY NimIg) = m — £ — dim(S)
MAK:
N (koaV V=Yg,
Y _y Iy ding(K)IT,, 2¥ = { (koz") B
—_——

dt YAk .QSY
Ag
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11,08
ra+B—C(Z) = katBoC Tp Tg
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Power-law kinetics

1A+1B—C

0.8
ra+Boc(T) = karpoczp! 2h

o MAK: rewrite stoichiometry,

1.1A+08B — C+01A-02B

o generalized mass-action kinetics (GMAK):
keep stoichiometry and add kinetics,

A+B C
(11A+08B)] "|(...)

in general, for reaction y — v’ with rate 7,/ (z) = ky_,y x¥,

@z@



Formal definitions - continued

Generalized mass-action system (G, v, 7, k):

graph G=(V,E),V ={1,...,m}, E CV x V, £ connected components
map y: V — RY (stoichiometric) complexes
map y: Vo — RY kinetic-order complexes

map k: E — Ry rate constants
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graph G = (V, E), V = {1...., m}, E CV x V, £ connected components

map y: V — RL (stoichiometric) complexes
map y: Vs = RY kinetic-order complexes
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Generalized mass-action system (G, v, 7, k):

graph G = (V, E), V = {1...., m}, E CV x V, £ connected components

map y: V — RL (stoichiometric) complexes
map y: Vs = RY kinetic-order complexes
map k: E — Ry rate constants
Edge reaction y(i) — y(i') with rate 7y (2) = kjy 290

. ./ . .

v (2) y(i')



Formal definitions - continued

Generalized mass-action system (G, v, 7, k):

graph G = (V, E), V = {1...., m}, E CV x V, £ connected components

map y: V — RY (stoichiometric) complexes
map y: Vs = RY kinetic-order complexes
map k: E — Ry rate constants
Edge reaction y(i) — y(i') with rate 7y (2) = kjy 290

. ./ . .

L y(@) | [ (@)

(@) {(.-)
dx
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Important objects - continued

Decomposition (stoichiometry, graph, kinetic orders):

dz [N (koz") V=Yg,
dt B YAk .CBY
Kinetic-order subspace: . )
S = 1m(YIE)

Kinetic-order deficiency:
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Important objects - continued

Decomposition (stoichiometry, graph, kinetic orders):

dz [N (koz") V=Yg,
dt B YAk .CBY
Kinetic-order subspace: . )
S = 1m(YIE)

Kinetic-order deficiency:

6 = dim(ker Y NimIg) = m — £ — dim(S)

MAK = GMAK with Y =Y and hence S= S and § = §
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Modeling: MAK via GMAK

SIR (susceptible, infected, removed) model:

0%s, s%o s+ib21, 15R 1%0, R%0

constant population size, b = d:

d .
S=0d, s+15 02
b
assume MAK: 1S4+11 i) 21, 7 =k1xéx|1
via GMAK: S5, ri=kixiaf

SIR model (with MAK via GMAK):

P

r*dl T*
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2. Equilibria

Positive equilibria for GMAK:
Z,={z R | YArz" =0}
Positive complex-balanced equilibria (CBE):
Cp={z eR™ | Ayz¥ =0}

Basic facts:
o If Cy # (0 (for some k), then G is weakly reversible,
that is, the components of the graph are strongly connected.
o If Oy # 0, then C), = e 5" has a monomial parametrization,
that is, it is given by binomial equations.
o If 6 =0, then Z;, = C,.
recall: § = dim(kerY Nim /) and im A;, C im Ig.



Deficiency zero for MAK

9 = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,

there exists a unique positive equilibrium,

which is complex-balanced and asymptotically stable,

in every stoichiometric class 2’ + S and for all rate constants k,
if and only if § =0 and G is weakly reversible.
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Deficiency zero for MAK

9 = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,

there exists a unique positive equilibrium,

which is complex-balanced and asymptotically stable,

in every stoichiometric class 2’ + S and for all rate constants k,
if and only if § =0 and G is weakly reversible.

| A\

Proof.

unique existence: “Birch's theorem”

asymptotic stability: Lyapunov function = entropy [
Result:

unique and stable solution for all (unknown) model parameters
vs.
multiple or unstable solutions for some (realistic) parameters
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Ee)e=( JHe=(E)

12 21 23 31 45 54 [k oaze

A A/-1 1 2 -1 -1 1 ka1 wc

d | zs . v Bl -1 1 0 1 0 0 kos xc
dt | zc —N(I“x ) “cl1 -1 -1 0 0 0 kst (za)2
- pb\o 0 0 0 1 -1 Kas a
ksa Tp

m=5, (=2, dimS=3
6=m—£—dimS =0

G is weakly reversible.
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Extensions

Kinetics:
o MAK
@ power-law, GMAK

@ monotonic

Result:
@ existence
@ uniqueness

@ unique existence

Conditions:
@ necessary
o sufficient

@ equivalent



Injectivity = uniqueness

Craciun & Feinberg (2005). Multiple equilibria in complex chemical reaction networks:
I. The injectivity property, SIAM J of Applied Mathematics

Positive equilibria for MAK:
(with in/outflows for all species)
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Injectivity = uniqueness

Craciun & Feinberg (2005). Multiple equilibria in complex chemical reaction networks:
I. The injectivity property, SIAM J of Applied Mathematics

Positive equilibria for MAK:
(with in/outflows for all species)

- > - Z (y(z’) - y(z)) i 2 = Te(x), [ RY — R"

0= — =
&t ~ &
i—i'eER



Injectivity = uniqueness

Craciun & Feinberg (2005). Multiple equilibria in complex chemical reaction networks:
I. The injectivity property, SIAM J of Applied Mathematics

Positive equilibria for MAK:
(with in/outflows for all species)

=i = Z (y(@") = (@) ki D = fi(z), fr:RL - R"

0= — =
dt ~ 2
i—i'eER

map fi injective =  positive equilibrium unique



Injectivity = uniqueness

Craciun & Feinberg (2005). Multiple equilibria in complex chemical reaction networks:
I. The injectivity property, SIAM J of Applied Mathematics

Positive equilibria for MAK:
(with in/outflows for all species)

d ' | |
0= d_gtc - Z (y(zl) - Z/(Z)) ki 2 = fu(x), fr:RL = R"

i—i'eER

map fi injective =  positive equilibrium unique

Theorems (Craciun, Feinberg 2005)

The following statements are equivalent:

@ fi is injective for all k € RE.
o det(%k) # 0 for all z € RZ and k € RE.

@ All nonzero coefficients in det(%%) have the same sign.




Injectivity = uniqueness

Craciun, Garcia-Puente, Sottile (2010). Some Geometrical Aspects of Control Points for
Toric Patches, Mathematical Methods for Curves and Surfaces

Positive equilibria for power-law kinetics:
(N,V e R"™  and k € RY)

de - ] ,U'
():E:j;nﬂ-ij "=N(koaV) = fi(w),
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Positive equilibria for power-law kinetics:
(N,V e R"™  and k € RY)
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Injectivity = uniqueness

Craciun, Garcia-Puente, Sottile (2010). Some Geometrical Aspects of Control Points for
Toric Patches, Mathematical Methods for Curves and Surfaces

Positive equilibria for power-law kinetics:
(N,V e R"™  and k € RY)

Theorems (Craciun, Garcia-Puente, Sottile 2010)

The following statements are equivalent:

@ fi is injective for all k € RL.
° det( =) # 0 for all z € RZ and k € RL .

° det(NI) det(V7) > 0 for all I C [r] of cardinality n (or "< 0’ for all I)
and det(Ny) det(V7) # 0 for some 1.




Injectivity = uniqueness: compatibility classes

Feliu & Wiuf (2012). Preclusion of switch behavior in reaction networks with
mass-action kinetics, J of Applied Mathematics and Computing

Gnacadja (2012). A Jacobian criterion for the simultaneous injectivity on positive
variables of linearly parameterized polynomials maps, Linear Algebra and its Applications

Linear dependencies:

Lz(t)=c with LeR*"st. LN =0
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Injectivity = uniqueness: compatibility classes

Feliu & Wiuf (2012). Preclusion of switch behavior in reaction networks with
mass-action kinetics, J of Applied Mathematics and Computing

Gnacadja (2012). A Jacobian criterion for the simultaneous injectivity on positive
variables of linearly parameterized polynomials maps, Linear Algebra and its Applications

Linear dependencies:
Lz(t)=c with LeR*"st. LN =0

- - f'nd( N . positive equilibria unique
map fi(z) = ( Lx Injective — in compatibility classes

Theorems (Feliu & Wiuf 2012, Gnacadja 2012)

The following statements are equivalent:

@ f is injective on compatibility classes for all £ € RZ.
o f is injective for all k € RY.
° ker% Nim N = {0} for all z € RZ and k € R%.

odet( ) # 0 for all z € RZ and k € R




Injectivity <= uniqueness

M & Regensburger (2012). Generalized mass action systems: complex balancing
equilibria and sign vectors of the stoichiometric and kinetic-order subspaces,
SIAM J on Applied Mathematics

CBE for GMAK: ) ) .
(S=kerW, S =ker W with W € R>" W € R¥>" and z* € RZ)

Fpe(€) = iwj iV =W (x o gVV) ,
j=1
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Injectivity <= uniqueness

M & Regensburger (2012). Generalized mass action systems: complex balancing
equilibria and sign vectors of the stoichiometric and kinetic-order subspaces,
SIAM J on Applied Mathematics

CBE for GMAK: i ) )
(S=kerW, § =ker W with W € R>" W € R¥>" and 2* € RZ)

Fpe (&) = iwj iV =W (w o gVV) , Fp:RE S RA
j=1

positive CBE unique

Fy« injective — . s
in compatibility classes

Injectivity (M & Regensburger 2012)

The following statements are equivalent:
@ [« is injective for all z*.
° 85;* is injective for all £ and z*.

e sign(S) Nsign(S+) = {0}.
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Concordance <= injectivity = uniqueness

Shinar & Feinberg (2012). Concordant chemical reaction networks, Mathematical
Biosciences

Reaction network (G, y) with weakly monotonic kinetics 7:
For every z,2’ € RZ and (1 — i) € E,
Q@ 7y (2)>r,y(xr) = thereis j € supp(y(i)) s.t. a:; > x4, and
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Concordance <= injectivity = uniqueness

Shinar & Feinberg (2012). Concordant chemical reaction networks, Mathematical
Biosciences

Reaction network (G, y) with weakly monotonic kinetics 7:

For every z,2’ € RZ and (1 — i) € E,

Q@ rii(2')>risi(z) = thereis j € supp(y(i)) s.t. % > x5, and

Q riyiv(2)=risu(z) = 2} =ux; forall j € supp(y(i)) or there are
j:3" € supp(y(i)) s.t. 2 > x; and 2, < @

A network is not concordant, if there are « € ker N and 0 # 3 € im N
such that, for all (i » ') € E,

Q@ oy #0 = sign(oy_ir) = sign(B;) for some j € supp(y(z)), and
Q@ ojy =0 = f; =0 forall j €supp(y(i)) or there are
J,J" € supp(y(i)) s.t. 0 # sign(B;) = —sign(fy).



Concordance <= injectivity = uniqueness

Shinar & Feinberg (2012). Concordant chemical reaction networks, Mathematical
Biosciences

Reaction network (G, y) with weakly monotonic kinetics 7:
For every z,2’ € RZ and (1 — i) € E,
Q@ rii(2')>risi(z) = thereis j € supp(y(i)) s.t. % > x5, and
Q riyiv(2)=risu(z) = 2} =ux; forall j € supp(y(i)) or there are
j:3" € supp(y(i)) s.t. 2 > x; and 2, < @
A network is not concordant, if there are a € ker N and 0 # 5 € im N
such that, for all (i » ') € E,
Q@ oy #0 = sign(oy_ir) = sign(B;) for some j € supp(y(z)), and
QO o,y =0 = B;=0forall j € supp(y(i)) or there are
J,J" € supp(y(i)) s.t. 0 # sign(B;) = —sign(fy).

Theorem (Shinar & Feinberg 2012)

The map Nr(z) is injective on compatibility classes
for all weakly monotonic kinetics r(x)
if and only if the reaction network is concordant.




Injectivity

More results

Wiuf & Feliu (2013). Power-law kinetics and determinant criteria for the preclusion of
multistationarity in networks of interacting species, SIAM J on Applied Dynamical
Systems

Feliu (2014). Injectivity, multiple zeros, and multistationarity in reaction networks,
Proceedings of the Royal Society A

M, Feliu, Regensburger, Conradi, Shiu, Dickenstein (2016). Sign Conditions for
Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction
Networks and Real Algebraic Geometry. Foundations of Computational Mathematics

Reviews
Banaji & Pantea (2016). Some Results on Injectivity and Multistationarity in Chemical
Reaction Networks, SIAM J on Applied Dynamical systems 63 pages

Feliu, M, Regensburger (2019), Characterizing injectivity of classes of maps via classes
of matrices, Linear Algebra and its Applications 26 pages
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Unique existence: Deficiency zero for GMAK

6 = 0 theorem (M & Regensburger 2014)
Cp#0forallk iff 0=0and G is weakly reversible.

§ = 6 = 0 theorem ?

For GMAK, there exists a unique positive CBE
in every stoichiometric class 2’ + S and for all rate constants k
iff 6 =0=0, G is weakly reversible, and conditions(.S, 5).

A,

conditions(S, S) ?

S =ker W, S = ker W with W € R¥" W e RIxn.

existence/uniqueness of CBE surjectivity/injecti\{ity of
in every 2’ + S = Fo(z) = W(coeW'®)
for all k for all ¢




Unique existence: Deficiency zero for GMAK

Theorem (M, Hofbauer, Regensburger et al 2019)
F. is bijective for all ¢ iff
(i) sign(S) N sign(S+) = {0},

(ii) for every nonzero 7 € sign(S=)q, there is a nonzero 7 € sign(S+)g
such that 7 < 7, and

(iii) the pair (S, S) is nondegenerate.
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Theorem (M, Hofbauer, Regensburger et al 2019)
F¢ is bijective for all ¢ iff
(i) sign(S) N sign(S+) = {0},

(ii) for every nonzero 7 € sign(S=)q, there is a nonzero 7 € sign(S+)g
such that 7 < 7, and

(iii) the pair (S, S) is nondegenerate.

Proof.

Hadamard'’s global inversion theorem,
polyhedral geometry, oriented matroids [

| A\

§ =6 = 0 theorem !

For GMAK, there exists a unique positive CBE
in every stoichiometric class 2’ + S and for all rate constants k
iff  d=0=0, G is weakly reversible, and (i), (ii), and (iii) hold.




Unique existence: Deficiency zero for GMAK

Theorem (M, Hofbauer, Regensburger et al 2019)
F¢ is bijective for all ¢ iff
(i) sign(S) Nsign(S*) = {0},
(ii) for every nonzero 7 € sign(S=)q, there is a nonzero 7 € sign(S+)g
such that 7 < 7, and

(iii) the pair (S, S) is nondegenerate.

| A\

Proof.
Hadamard'’s global inversion theorem,
polyhedral geometry, oriented matroids [

Aichmayr et al (2024). A SageMath Package for Elementary and Sign Vectors with
Applications to Chemical Reaction Networks, submitted



Vector x € R™, sign vector sign(x) € {—,0,+}"™

Set S C R™:
sign(S) = {sign(z) | z € S}
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Vector x € R™, sign vector sign(x) € {—,0,+}"™

-1 _
sign| 0 | =10
2 +
Set S C R™:
sign(S) = {sign(z) | z € S}

Partial order on signs == partial order on sign vectors:

0<—0<+ = (U I

+ +

Sign vector set ¥ C {—,0,+}™

Y ={re{-0,+}" |7 <7 for some T € X}



Small perturbations of the kinetic orders Y (or the exponents 1),
that is, of the subspace S in the Grassmannian

Theorem (M et al 2019)

F. is bijective for all ¢ and for all small perturbations S,

iff  sign(S) C sign(S).




Small perturbations of the kinetic orders Y (or the exponents 1),
that is, of the subspace S in the Grassmannian

Theorem (M et al 2019)

F. is bijective for all ¢ and for all small perturbations S,

iff  sign(S) C sign(S).

Robust § = = 0 theorem (M et al 2019)

For GMAK, there exists a unique positive CBE
in every stoichiometric class =’ + S, for all rate constants k,

and for all small perturbations of the kinetic orders
iff §=0=0, G is weakly reversible, and sign(S) C sign(S).




Small perturbations of the kinetic orders Y (or the exponents 1),
that is, of the subspace S in the Grassmannian

Theorem (M et al 2019)

F. is bijective for all ¢ and for all small perturbations S,

iff  sign(S) C sign(S).

Robust § = § = 0 theorem (M et al 2019)

For GMAK, there exists a unique positive CBE
in every stoichiometric class =’ + S, for all rate constants k,
and for all small perturbations of the kinetic orders

iff §=0=0, G is weakly reversible, and sign(S) C sign(S).

\.

Robust § = 0 theorem (M et al 2019)

For MAK, if § = 0 and G is weakly reversible,
then there exists a unique positive equilibrium in every stoichiometric class,
for all rate constants, and for all small perturbations of the kinetic orders.

-




Stability of CBE for GMAK

Sign (vector) conditions sufficient for linear stability:
negative of (scaled or reduced) Jacobian is P-matrix (and sign-symmetric)

@ cycle decomposition of the graph

@ new decomposition of the graph Laplacian,
monomial evaluation orders ( “strata” of RZ)

extend asymptotic stability of CBE for MAK (differential equations)
to “binomial differential inclusions”

M & Regensburger (2024). Sufficient conditions for linear stability of complex-balanced
equilibria in generalized mass-action systems, SIAM Journal on Applied Dynamical
Systems

M (2023). On a new decomposition of the graph Laplacian and the binomial structure
of mass-action systems, Journal of Nonlinear Science
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Positive equilibria of generalized mass-action systems:
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3. Polynomial systems

Positive equilibria of generalized mass-action systems:
0= d71 B {YA;{ g
dt N (k o 1‘)
Parametrized systems of generalized polynomial equations:
A (c o .CEB) =0
variables z € RZ, exponents B € R"*™, monomials 2% € R”

parameters ¢ € R, monomial terms co z? ¢ RT
coefficients A € RF*™



Hierarchy of polynomial systems

(co xB) eC
(in-)finitely many, (non-)strict inequalities,
given by a cone C' in the positive orthant
b
A (c o SL‘B) >0
finitely many, non-strict inequalities,
involving the polyhedral cone {y > 0| Ay > 0}
b
A ((: ) xB) =0
finitely many equations,
involving the subspace cone {y > 0| Ay =0}
e pN
AzB =0 i—f:N(koxV):o

fewnomial systems (generalized)
(not involving parameters) mass-action systems



Relevant objects are geometric

Example: two (non-overlapping) trinomials in three variables

bt b2 b3 _
cix +cxr —czx =0,

bt b® b
caxr +csxr —cgx

withz € R and ' €R3,i=1,...,6
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bl b2 b3
cix +cxr —czx =0,

bt b® b
caxr +csxr —cgx

withz € RS and b €R3,i=1,...,6
“normalize”:
c1x1+coxa —1 =0,
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Relevant objects are geometric

Example: two (non-overlapping) trinomials in three variables

clmbl+czmb2—03xb3 =0,
Ca xb4 +cs xbs — cg be =0
withz € R and ' €R3,i=1,...,6
“normalize”:
c1xT1+c2xe —1 =0,
Cc4 T3 + C5 x?lx?:c’?’f —-1=0
A(COCEB):OWith o
C2
1 0 0 0 b O
A:(é(l)_olg(l)_ol),B:0100b20,c:cl
00 0 1 b3 0 4
Cs
1

m = 6 monomials in n = 3 variables
and / = 2 classes
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Geometric objects - from coefficients

(non-empty) coefficient cone:
C =ker ANRY

{ classes if
C=Cy x---xCy

in the example,
C=0Cy xCy with C;=Cii=ker(l 1 —1)NR

coefficient set (polytope):
P=CnA

with direct product A = A x -+ x Ay of (standard) simplices

in the example,
A=Ay x Ay with Aj=A,={zeR |, 2 =2}
P=PxP, with P,=P =C,NA,



Geometric objects - from coefficients

A=(1 1 -1)

Y1



Geometric objects - from coefficients

A=(1 1 -1)

C:kcrAﬁ}R'g>

Y2
Y1



Geometric objects - from coefficients

Y3

A=(1 1 -1)

C:kcrAﬁ}R'g>

Y2
Y1



Geometric objects - from exponents
B
5= (3)

with “Cayley” matrix J € {0, 1}**™ indicating classes



Geometric objects - from exponents

-2

with “Cayley” matrix J € {0, 1}**™ indicating classes
in the example,

1 00 0 b O
01 00 b O
B=]10 0 0 1 b3 O
1110 0
0001 1 1



Geometric objects - from exponents
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with “Cayley” matrix J € {0, 1}**™ indicating classes
in the example,

b1
ba
bs

=

I
o, oo R
S =
o oo o
I S
—_oooo
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monomial dependency subspace:
D =kerB

affine dependencies between exponents within classes



Geometric objects - from exponents

-2

with “Cayley” matrix J € {0, 1}**™ indicating classes
in the example,

b1
ba
bs

=

I
o, oo R
S =
o oo o
I S
—_oooo

1

monomial dependency subspace:
D =kerB

affine dependencies between exponents within classes

monomial dependency:
d=dim D



Main result (simplified)

Theorem: polynomial ~ binomial

The solution set
Z.={z €RY | A(cozP) =0},

is in one-to-one correspondence with the solution set on the coefficient
polytope,
Y.={ye P|y*=c*forall z€ D},

where P is the coefficient polytope, and D is the dependency subspace.
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is given by binomial equations (for y € P C RZ).



Main result (simplified)

Theorem: polynomial ~ binomial

The solution set

Z.={z €RY | A(cozP) =0},

is in one-to-one correspondence with the solution set on the coefficient

polytope,
Y.={y € P|y* = forall z € D},

where P is the coefficient polytope, and D is the dependency subspace.

Every parametrized system of polynomial equations (for x € RZ)
is given by binomial equations (for y € P C RZ).

With H € R™*4 sych that D = im H:

yH = M

d binomial equations for y € P
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Comments

o general result

@ classification of polynomial systems via dependency d (and dim P)
if d =0 (the “very few”-nomial case), then Y. = P.

@ solution set Y, depends on m positive parameters ¢
via d monomials ¢

@ result is based on linear algebra and convex/polyhedral geometry,
but not on real algebraic geometry

@ solution set Y. can be studied with methods from analysis.
sign-characteristic functions,

Brouwer degree, Hadamard's theorem,
Descartes' rule of signs for functions, Wronskians, ...

e Main result (full):
solution set Z. can be obtained from Y, via exponention



Example - binomial equation
Yy = <ZQ> e P=PxP: yz =X 10 +(1—)\i) 1l =11-X; , A1, A2 € (0, ].)
1 1 1

b1

bo
—(b1 + b2)

bs

—1

0
0
0], D=kerB=imz with z=
0
! 1— b



Example - binomial equation
Yy = <ZQ> e P=PxP: yz =X 10 +(1—)\i) 1l =11-X; , A1, A2 € (0, ].)
1 1 1

1 000 b O 21
01 0 0 b O 2
B:(lj): 0 0 01 b3 0|, D=kerB=imz with z= _(b1b+b2)
1 110 0 0 3
00 0 1 1 1 L — g

= _ oz b ba b —1 _ b1 bo by —1 *
y =", e, A1 -A)PAR (M- X)) =ate’eiey; =ic



Example - binomial equation
Yy = <:ZQ> e P=PxP: yz =X 10 +(1—)\i) 1l =11-X; , A1, A2 € (0, ].)
1 1 1

1000 b 0 Z;
B= (?) = 8 (1) 8 (1) Zi 8 , D=kerB=imz with z= —(b1b:-b2)
1110 0 0 >
000 1 1 1 _
d=dimD =1:
Y = de, A —ADPAB(1 - N) T =it = e

sign-characteristic functions:
Sa,B: (O, 1) — R>,
A= A% (1= NP

separation of variables:
Sbybg (A1) = € 5-p5,1(A2)



Example - solutions in Ay, Ay

Az
1

b1:1,b2:23nd by = 2: 05
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Example - solutions in Ay, Ay

b1:1,b2:23nd b3:2:

b1:1,b2:23nd b3:—22

Ay
1
05
05 M
o<1 =1 c'>1
A Az A2
1 1 1
05 05 05
05 3 A 05 3 M 05 3 M




Example - solutions in Ay, Ay

Az
1
b1:1,b2:23nd by = 2: 05
05 M
c'<t c'=1 c'>1
Ay Az Az
1 1 1
b1 = 1,b2 = 2 and b3 = —2: 05 05 05
05 3 A 05 3 M 05 3 M
c*<c™ c*=c™ c*>c™
Ay Az Az
1 1 1
b1:—1,62:—2 and b3:—2: .
crit __ (272
c = ( 1 05 05 05
05 M 05 M 05 M



More examples

M & Regensburger (2023a). Parametrized systems of polynomial inequalitites with real
exponents via linear algebra and convex geometry, arXiv:2306.13916 [math.AG]

@ d = 0: two overlapping trinomials in four variables (m =4,n =4, =1)
X = Xp, Xp Y 2 X+Y,, Y, =Y

@ d = 1: one trinomial in one variable (m =3,n=1,£=1)

= 2: one trinomial equation and one tetranomial inequality (m = 7,n =5, = 2)
X1 &= Xp, 2X1 + X — 3X3



More examples

M & Regensburger (2023a). Parametrized systems of polynomial inequalitites with real
exponents via linear algebra and convex geometry, arXiv:2306.13916 [math.AG]

@ d = 0: two overlapping trinomials in four variables (m =4,n =4, =1)
X = Xp, Xp Y 2 X+Y,, Y, =Y

@ d = 1: one trinomial in one variable (m =3,n=1,£=1)

= 2: one trinomial equation and one tetranomial inequality (m = 7,n =5, = 2)
X1 &= Xp, 2X1 + X — 3X3

M & Regensburger (2023b). Parametrized systems of polynomial equations with real
exponents: applications to fewnomials, arXiv:2304.05273 [math.AG]

@ d = 1: two non-overlapping trinomials in three variables (m = 6,n = 3,{ = 2)
@ d = 1: two overlapping trinomials in two variables (m =4,n =2, =1)
cf. Bihan & Dickenstein & ...(2021, 2017, 2015, 2007)

@ d > 2: one trinomial and one ¢-nomial in two variables (m = 3 +¢,n = 2,{ = 2)
for t = 3 (two trinomials), cf. Haas (2002)



Geometric objects - from exponents (continued)

monomial difference matrix:

M =BI=(Bily, ... By,)cR™Mm0
with “incidence” matrix
['m,l 0
I = . c I&mx(m—ﬁ)7 where
0 I,

Ln, - <idlr_7[z_l ) S Rmx(mfl), i.e., IQ = (_11> , ]3 — 0 1

m—1



Geometric objects - from exponents (continued)

monomial difference matrix:

M = BI = (Bily,

with “incidence” matrix

[m 1
I p—

I, = <Idlr_7[l_l ) e Rmx(mfl),

m—1

monomial difference subspace:

0

€ I&mx(m—ﬁ)7 where

Im/

i.e., IQ =

L=imM

B@-[mg) c Rnx(mfﬂ)



Geometric objects - from exponents (continued)

monomial difference matrix:

M =BI=(Bily, ... By,)cR™Mm0
with “incidence” matrix
I, 0
I= e R™(m=0 " where
0 I,

Im, - <idl7‘7[l'l ) S Rmx(mfl), i.e., IQ

m—1

I
N

-
—
N~

&
‘Or—t
—_

_= O

monomial difference subspace:

L=imM

d=m-—/{—dimL I




Main result (full)

Theorem

The solution set Z. = {x € R% | A(cozP) =0} can be written as
Z.={lyoc ¥ lyeY}oe

with
Y.={yeP|y*=c* forall z € D}.

P ... coefficient set
D ... monomial dependency subspace
L ... monomial difference subspace

E =1M~* ... exponentiation matrix
I ... (incidence) matrix
M* ... generalized inverse of M = B 1
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Open problems and applications

A(coaxP)=0:

— When does there exist a solution? (for all parameters)

— When is the solution unique? (on the coefficient polytope)
Fewnomial systems:

— What is an (optimal) upper bound
for the number of (components of) solutions?

— How can Descartes’ rule of signs be extended
to multivariate polynomial equations?

Reaction networks:

— When do (positive) equilibria have a monomial parametrization?
(depending rationally on the rate constants)

— How can results such as the deficiency one theorem be extended?
(from 6 =1 tod =1, and from MAK to GMAK)



Thanks for your attention!



