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results depending on network properties or not

3. Abstract framework:
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Modeling framework

chemistry

biology (ecology, epidemiology)

economics, engineering

Every power-law dynamical system
(and hence every polynomial dynamical system)
arises from a
reaction network with (generalized) mass-action kinetics.
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Definitions

Classical definition:
reaction network = ( species, complexes, reactions )

Example:
species = {A,B,C,D}
complexes = {A + B,C, 2A,A,D} formal sums of scecies
reacts = {A + B→ C,C→ A + B,C→ 2A, 2A→ A + B,A→ D,D→ A}

Definition induces complex-reaction graph:�� ��A + B
�� ��C

�� ��A
�� ��D

�� ��2A

linkage classes: components of graph
graph weakly reversible: components strongly connected
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Definitions

Modern definition:
reaction network = ( graph, map )
map: vertices → complexes

M & Regensburger (2014). Generalized Mass-Action Systems and Positive Solutions of
Polynomial Equations with Real and Symbolic Exponents, Proceedings of the 16th
International Workshop Computer Algebra in Scientific Computing (CASC)
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Classical vs. modern

Example:
0 � A � 2A � A + B � 2B

Feinberg (1987). Chemical reaction network structure and the stability of complex
isothermal reactors – I. The deficiency zero and deficiency one theorems, Chemical
Engineering Science

Subnetworks:
0 � A � 2A 2A � A + B � 2B

Not a network in the sense of the classical definition,
but in the sense of the modern definition.
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Stoichiometry - what happens in a reaction

Examples of elementary (chemical) reactions:

A→ B, A + B→ C, A + B→ C + D, 2 · A→ B, . . .

complexes of at most two molecular species

General (or composite) reaction:

a · A + b · B + c · C + . . . → a′ · A + b′ · B + c′ · C + . . .

Autocatalysis:

chemistry epidemiology ecology
A + B→ 2 · A I + S→ 2 · I F + R→ 2 · F
not in one step I ... infected F ... fox

S ... susceptible R ... rabbit

M, Flamm, Stadler (2022), What makes a reaction network ”chemical”?,
J of Cheminformatics
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Chemistry

Proper part of a reaction network must be conservative!

Example:
0 � A � 2A � A + B � 2B

in/outflow “reactions”: 0 � A
proper chemical reactions: A � 2A � A + B � 2B

A � 2A cornucopia A + X � 2A

Futile cycles must not contain irreversible reactions!

Example:

perpetuum mobile
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Stoichiometry - more abstractly

With n species A, B, C, ..., we write

a · A + b · B + c · C + . . . → a′ · A + b′ · B + c′ · C + . . .

as
y → y′ with y, y′ ∈ Rn≥.

Reaction vector:
y′ − y

For example, we write
1 A + 1 B→ 1 C

as

y → y′ with y =




A 1
B 1
C 0
... 0

, y′ =




0
0
1

0

, y′ − y =




−1
−1
1

0

.
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Kinetics - how fast a reaction happens

Rate of reaction y → y′:
ry→y′(x) ≥ 0

with concentrations/fractions of species x ∈ Rn≥

Results for

“general” kinetics

monotone, power-law, Michaelis-Menten, ...

mass-action kinetics (MAK):

ry→y′(x) = ky→y′ x
y

monomial xy =
∏n
i=1(xi)

yi

for example, for
1 A + 1 B→ C,

we have
rA+B→C(x) = kA+B→C x

1
A x

1
B.
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Formal definitions

Reaction network (G, y):

graph G = (V,E), V = {1, . . . ,m}, E ⊆ V × V , ` connected components
map y : V → Rn≥ complexes

Edge (i→ i′) ∈ E (via map y) represents reaction y(i)→ y(i′).

Kinetic system (G, y, r):

map r : Rn≥ → RE≥ reaction rates

Reaction y(i)→ y(i′) has rate ri→i′(x).

dx

dt
=

∑
i→i′∈E

(
y(i′)− y(i)

)
ri→i′(x)

Mass-action system (G, y, k): map k : E → R>

dx

dt
=

∑
i→i′∈E

(
y(i′)− y(i)

)
ki→i′ x

y(i)
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Example with MAK

1
�� ��A + B

�� ��C 2 4
�� ��A

�� ��D 5

�� ��2A 3

d

dt


xA
xB
xC
xD

 = Nrk(x) =


12 21 23 31 45 54

A −1 1 2 −1 −1 1
B −1 1 0 1 0 0
C 1 −1 −1 0 0 0
D 0 0 0 0 1 −1



k12 xAxB
k21 xC
k23 xC
k31 (xA)

2

k45 xA
k54 xD


stoichiometric matrix N , rate vector rk(x)

dx

dt
= Y Ak x

Y =


1 2 3 4 5

A 1 0 2 1 0
B 1 0 0 0 0
C 0 1 0 0 0
D 0 0 0 0 1



−k12 k21 k21 0 0
k12 −(k21 + k23) 0 0 0
0 k23 −k21 0 0
0 0 0 −k45 k54
0 0 0 k45 −k54



xAxB
xC

(xA)
2

xA
xD


complex matrix Y , Laplacian matrix Ak, monomial vector xY
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Important objects

dx

dt
=

∑
i→i′∈E

(
y(i′)− y(i)

)
ri→i′(x) = Y IE︸︷︷︸

N

r(x)

Stoichiometric subspace:
S = im(Y IE)

Stoichiometric class (invariant set):

dx

dt
∈ S, x(t) ∈ x(0) + S

(Stoichiometric) deficiency:

δ = dim(kerY ∩ im IE) = m− `− dim(S)

MAK:

dx

dt
= Y IE diag(k)ITE,s︸ ︷︷ ︸

Ak

xY =

{
N
(
k ◦ xV

)
V = Y IE,s

Y Ak x
Y
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Power-law kinetics

1 A + 1 B→ C

rA+B→C(x) = kA+B→C x
1.1
A x0.8B

MAK: rewrite stoichiometry,

1.1 A + 0.8 B → C + 0.1 A− 0.2 B

generalized mass-action kinetics (GMAK):
keep stoichiometry and add kinetics,�

�
�



A + B
( 1.1 A + 0.8 B )
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in general, for reaction y → y′ with rate ry→y′(x) = ky→y′ x
ỹ,�
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Formal definitions - continued

Generalized mass-action system (G, y, ỹ, k):

graph G = (V,E), V = {1, . . . ,m}, E ⊆ V × V , ` connected components
map y : V → Rn≥ (stoichiometric) complexes
map ỹ : Vs → Rn≥ kinetic-order complexes
map k : E → R> rate constants

Edge

i→ i′

reaction y(i)→ y(i′) with rate ri→i′(x) = ki→i′ x
ỹ(i)�

�
�



y(i)
( ỹ(i) )

→

�
�

�



y(i′)
( . . . )

dx

dt
=

∑
i→i′∈E

(
y(i′)− y(i)

)
ki→i′ x

ỹ(i)
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Important objects - continued

Decomposition (stoichiometry, graph, kinetic orders):

dx

dt
=

{
N
(
k ◦ xV

)
V = Ỹ IE,s

Y Ak x
Ỹ

Kinetic-order subspace:
S̃ = im(Ỹ IE)

Kinetic-order deficiency:

δ̃ = dim(ker Ỹ ∩ im IE) = m− `− dim(S̃)

MAK = GMAK with Ỹ = Y and hence S̃ = S and δ̃ = δ
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Modeling: MAK via GMAK

SIR (susceptible, infected, removed) model:

0
b→ S, S

d→ 0, S + I
i→ 2 I, I

r→ R, I
d→ 0, R

d→ 0

constant population size, b = d:

S
d
�
b

0
r+d← I, S + I

i→ 2 I

assume MAK: 1 S + 1 I
i→ 2 I, ri = ki x

1
S x

1
I

via GMAK: S
i→ I, ri = ki x

1
S x

1
I

SIR model (with MAK via GMAK):�� ��I

�
�

�



S
( S + I )

�� ��0
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r+d
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2. Equilibria

Positive equilibria for GMAK:

Zk = {x ∈ Rn> | Y Ak xỸ = 0}

Positive complex-balanced equilibria (CBE):

Ck = {x ∈ Rn> | Ak xỸ = 0}

Basic facts:

If Ck 6= ∅ (for some k), then G is weakly reversible,
that is, the components of the graph are strongly connected.

If Ck 6= ∅, then Ck = x∗k ◦ eS̃
⊥

has a monomial parametrization,
that is, it is given by binomial equations.

If δ = 0, then Zk = Ck.
recall: δ = dim(kerY ∩ im IE) and imAk ⊆ im IE .
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Basic facts:

If Ck 6= ∅ (for some k), then G is weakly reversible,
that is, the components of the graph are strongly connected.

If Ck 6= ∅, then Ck = x∗k ◦ eS̃
⊥

has a monomial parametrization,
that is, it is given by binomial equations.

If δ = 0, then Zk = Ck.
recall: δ = dim(kerY ∩ im IE) and imAk ⊆ im IE .



Deficiency zero for MAK

δ = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,
there exists a unique positive equilibrium,
which is complex-balanced and asymptotically stable,
in every stoichiometric class x′ + S and for all rate constants k,
if and only if δ = 0 and G is weakly reversible.

Proof.

unique existence: “Birch’s theorem”
asymptotic stability: Lyapunov function = entropy

Result:
unique and stable solution for all (unknown) model parameters
vs.
multiple or unstable solutions for some (realistic) parameters



Deficiency zero for MAK

δ = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,
there exists a unique positive equilibrium,
which is complex-balanced and asymptotically stable,
in every stoichiometric class x′ + S and for all rate constants k,
if and only if δ = 0 and G is weakly reversible.

Proof.

unique existence: “Birch’s theorem”
asymptotic stability: Lyapunov function = entropy

Result:
unique and stable solution for all (unknown) model parameters
vs.
multiple or unstable solutions for some (realistic) parameters



Deficiency zero for MAK

δ = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,
there exists a unique positive equilibrium,
which is complex-balanced and asymptotically stable,
in every stoichiometric class x′ + S and for all rate constants k,
if and only if δ = 0 and G is weakly reversible.

Proof.

unique existence: “Birch’s theorem”
asymptotic stability: Lyapunov function = entropy

Result:
unique and stable solution for all (unknown) model parameters

vs.
multiple or unstable solutions for some (realistic) parameters



Deficiency zero for MAK

δ = 0 theorem (Horn & Jackson 1972, Horn 1972, Feinberg 1972)

For MAK,
there exists a unique positive equilibrium,
which is complex-balanced and asymptotically stable,
in every stoichiometric class x′ + S and for all rate constants k,
if and only if δ = 0 and G is weakly reversible.

Proof.

unique existence: “Birch’s theorem”
asymptotic stability: Lyapunov function = entropy

Result:
unique and stable solution for all (unknown) model parameters
vs.
multiple or unstable solutions for some (realistic) parameters



Example

1
�� ��A + B

�� ��C 2 4
�� ��A

�� ��D 5

�� ��2A 3

d

dt


xA
xB
xC
xD

 = N
(
k ◦ xV

)
=


12 21 23 31 45 54

A −1 1 2 −1 −1 1
B −1 1 0 1 0 0
C 1 −1 −1 0 0 0
D 0 0 0 0 1 −1



k12 xAxB
k21 xC
k23 xC
k31 (xA)

2

k45 xA
k54 xD



m = 5, ` = 2, dimS = 3

δ = m− `− dimS = 0

G is weakly reversible.
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Extensions

Kinetics:

MAK

power-law, GMAK

monotonic

Result:

existence

uniqueness

unique existence

Conditions:

necessary

sufficient

equivalent
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Injectivity =⇒ uniqueness

Craciun & Feinberg (2005). Multiple equilibria in complex chemical reaction networks:
I. The injectivity property, SIAM J of Applied Mathematics

Positive equilibria for MAK:
(with in/outflows for all species)

0 =
dx

dt
=

∑
i→i′∈E

(
y(i′)− y(i)

)
ki→i′ x

y(i) =: fk(x),

fk : Rn> → Rn

map fk injective =⇒ positive equilibrium unique

Theorems (Craciun, Feinberg 2005)

The following statements are equivalent:

fk is injective for all k ∈ RE>.

det(∂fk∂x ) 6= 0 for all x ∈ Rn> and k ∈ RE>.

All nonzero coefficients in det(∂fk∂x ) have the same sign.
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Injectivity =⇒ uniqueness

Craciun, Garcia-Puente, Sottile (2010). Some Geometrical Aspects of Control Points for
Toric Patches, Mathematical Methods for Curves and Surfaces

Positive equilibria for power-law kinetics:
(N,V ∈ Rn×r and k ∈ Rr>)

0 =
dx

dt
=

r∑
j=1

nj · kj xv
j

= N
(
k ◦ xV

)
:= fk(x),

fk : Rn> → Rn

Theorems (Craciun, Garcia-Puente, Sottile 2010)

The following statements are equivalent:

fk is injective for all k ∈ Rr>.

det(∂fk∂x ) 6= 0 for all x ∈ Rn> and k ∈ Rr> .

det(NI) det(VI) ≥ 0 for all I ⊆ [r] of cardinality n (or ‘≤ 0’ for all I)
and det(NI) det(VI) 6= 0 for some I.
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Injectivity =⇒ uniqueness: compatibility classes

Feliu & Wiuf (2012). Preclusion of switch behavior in reaction networks with
mass-action kinetics, J of Applied Mathematics and Computing

Gnacadja (2012). A Jacobian criterion for the simultaneous injectivity on positive
variables of linearly parameterized polynomials maps, Linear Algebra and its Applications

Linear dependencies:

Lx(t) = c with L ∈ Rl×n s.t. LN = 0

map f̃k(x) =

(
f indk (x)
Lx

)
injective =⇒ positive equilibria unique

in compatibility classes

Theorems (Feliu & Wiuf 2012, Gnacadja 2012)

The following statements are equivalent:

fk is injective on compatibility classes for all k ∈ Rr>.

f̃k is injective for all k ∈ Rr>.

ker ∂fk∂x ∩ imN = {0} for all x ∈ Rn> and k ∈ Rr>.

det(∂f̃k∂x ) 6= 0 for all x ∈ Rn> and k ∈ Rr>.
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Injectivity ⇐⇒ uniqueness

M & Regensburger (2012). Generalized mass action systems: complex balancing
equilibria and sign vectors of the stoichiometric and kinetic-order subspaces,
SIAM J on Applied Mathematics

CBE for GMAK:
(S = kerW , S̃ = ker W̃ with W ∈ Rd×n, W̃ ∈ Rd̃×n and x∗ ∈ Rn>)

Fx∗(ξ) :=

n∑
j=1

wj · x∗j ξW̃
j

= W
(
x∗ ◦ ξW̃

)
,

Fx∗ : Rd̃> → Rd

Fx∗ injective ⇐⇒ positive CBE unique
in compatibility classes

Injectivity (M & Regensburger 2012)

The following statements are equivalent:

Fx∗ is injective for all x∗.
∂Fx∗
∂ξ is injective for all ξ and x∗.

sign(S) ∩ sign(S̃⊥) = {0}.
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Concordance ⇐⇒ injectivity =⇒ uniqueness

Shinar & Feinberg (2012). Concordant chemical reaction networks, Mathematical
Biosciences

Reaction network (G, y) with weakly monotonic kinetics r:

For every x, x′ ∈ Rn> and (i→ i′) ∈ E,
i ri→i′(x

′) > ri→i′(x) =⇒ there is j ∈ supp(y(i)) s.t. x′j > xj , and
ii ri→i′(x

′) = ri→i′(x) =⇒ x′j = xj for all j ∈ supp(y(i)) or there are
j, j′ ∈ supp(y(i)) s.t. x′j > xj and x′j′ < xj′ .

A network is not concordant, if there are α ∈ kerN and 0 6= β ∈ imN
such that, for all (i→ i′) ∈ E,

i αi→i′ 6= 0 =⇒ sign(αi→i′) = sign(βj) for some j ∈ supp(y(i)), and
ii αi→i′ = 0 =⇒ βj = 0 for all j ∈ supp(y(i)) or there are

j, j′ ∈ supp(y(i)) s.t. 0 6= sign(βj) = − sign(βj′).

Theorem (Shinar & Feinberg 2012)

The map Nr(x) is injective on compatibility classes
for all weakly monotonic kinetics r(x)
if and only if the reaction network is concordant.
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Injectivity

More results

Wiuf & Feliu (2013). Power-law kinetics and determinant criteria for the preclusion of
multistationarity in networks of interacting species, SIAM J on Applied Dynamical
Systems

Feliu (2014). Injectivity, multiple zeros, and multistationarity in reaction networks,
Proceedings of the Royal Society A

M, Feliu, Regensburger, Conradi, Shiu, Dickenstein (2016). Sign Conditions for
Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction
Networks and Real Algebraic Geometry. Foundations of Computational Mathematics

Reviews

Banaji & Pantea (2016). Some Results on Injectivity and Multistationarity in Chemical
Reaction Networks, SIAM J on Applied Dynamical systems 63 pages

Feliu, M, Regensburger (2019), Characterizing injectivity of classes of maps via classes
of matrices, Linear Algebra and its Applications 26 pages



Unique existence: Deficiency zero for GMAK

δ̃ = 0 theorem (M & Regensburger 2014)

Ck 6= ∅ for all k iff δ̃ = 0 and G is weakly reversible.

δ = δ̃ = 0 theorem ?

For GMAK, there exists a unique positive CBE
in every stoichiometric class x′ + S and for all rate constants k
iff δ = δ̃ = 0, G is weakly reversible, and conditions(S, S̃).

conditions(S, S̃) ?

S = kerW , S̃ = ker W̃ with W ∈ Rd×n, W̃ ∈ Rd̃×n:

existence/uniqueness of CBE
in every x′ + S

for all k
⇐⇒

surjectivity/injectivity of

Fc(x) = W (c ◦ eW̃
Tx)

for all c
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Unique existence: Deficiency zero for GMAK

Theorem (M, Hofbauer, Regensburger et al 2019)

Fc is bijective for all c iff

(i) sign(S) ∩ sign(S̃⊥) = {0},
(ii) for every nonzero τ̃ ∈ sign(S̃⊥)⊕, there is a nonzero τ ∈ sign(S⊥)⊕

such that τ ≤ τ̃ , and

(iii) the pair (S, S̃) is nondegenerate.

Proof.

Hadamard’s global inversion theorem,
polyhedral geometry, oriented matroids

Aichmayr et al (2024). A SageMath Package for Elementary and Sign Vectors with
Applications to Chemical Reaction Networks, submitted
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δ = δ̃ = 0 theorem !

For GMAK, there exists a unique positive CBE
in every stoichiometric class x′ + S and for all rate constants k
iff δ = δ̃ = 0, G is weakly reversible, and (i), (ii), and (iii) hold.

Aichmayr et al (2024). A SageMath Package for Elementary and Sign Vectors with
Applications to Chemical Reaction Networks, submitted
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Sign vectors

Vector x ∈ Rn, sign vector sign(x) ∈ {−, 0,+}n:

sign

−1
0
2

 =

−0
+


Set S ⊆ Rn:

sign(S) = {sign(x) | x ∈ S}

Partial order on signs

=⇒ partial order on sign vectors:

0 < −, 0 < + =⇒

−0
+

 ≤
−−

+


Sign vector set Σ ⊆ {−, 0,+}n:

Σ = {τ ′ ∈ {−, 0,+}n | τ ′ ≤ τ for some τ ∈ Σ}
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Robustness

Small perturbations of the kinetic orders Ỹ (or the exponents W̃ ),
that is, of the subspace S̃ in the Grassmannian

Theorem (M et al 2019)

Fc is bijective for all c and for all small perturbations S̃ε
iff sign(S) ⊆ sign(S̃).

Robust δ = δ̃ = 0 theorem (M et al 2019)

For GMAK, there exists a unique positive CBE
in every stoichiometric class x′ + S, for all rate constants k,
and for all small perturbations of the kinetic orders

iff δ = δ̃ = 0, G is weakly reversible, and sign(S) ⊆ sign(S̃).

Robust δ = 0 theorem (M et al 2019)

For MAK, if δ = 0 and G is weakly reversible,
then there exists a unique positive equilibrium in every stoichiometric class,
for all rate constants, and for all small perturbations of the kinetic orders.
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Stability of CBE for GMAK

Sign (vector) conditions sufficient for linear stability:
negative of (scaled or reduced) Jacobian is P-matrix (and sign-symmetric)

cycle decomposition of the graph

new decomposition of the graph Laplacian,
monomial evaluation orders (“strata” of Rn>)

extend asymptotic stability of CBE for MAK (differential equations)
to “binomial differential inclusions”

M & Regensburger (2024). Sufficient conditions for linear stability of complex-balanced
equilibria in generalized mass-action systems, SIAM Journal on Applied Dynamical
Systems

M (2023). On a new decomposition of the graph Laplacian and the binomial structure
of mass-action systems, Journal of Nonlinear Science



3. Polynomial systems

Positive equilibria of generalized mass-action systems:

0 =
dx

dt
=

{
Y Ak x

Ỹ

N
(
k ◦ xV

)

Parametrized systems of generalized polynomial equations:

A
(
c ◦ xB

)
= 0

variables x ∈ Rn>, exponents B ∈ Rn×m, monomials xB ∈ Rm>
parameters c ∈ Rm> , monomial terms c ◦ xB ∈ Rm>
coefficients A ∈ Rk×m



3. Polynomial systems

Positive equilibria of generalized mass-action systems:

0 =
dx

dt
=

{
Y Ak x

Ỹ
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Hierarchy of polynomial systems(
c ◦ xB

)
∈ C

(in-)finitely many, (non-)strict inequalities,

given by a cone C in the positive orthant

↓
A
(
c ◦ xB

)
≥ 0

finitely many, non-strict inequalities,

involving the polyhedral cone {y ≥ 0 | Ay ≥ 0}
↓

A
(
c ◦ xB

)
= 0

finitely many equations,

involving the subspace cone {y ≥ 0 | Ay = 0}
↓ ↓

AxB = 0

fewnomial systems
(not involving parameters)

dx

dt
= N

(
k ◦ xV

)
= 0

(generalized)
mass-action systems



Relevant objects are geometric

Example: two (non-overlapping) trinomials in three variables

c1 x
b1 + c2 x

b2 − c3 xb
3

= 0,

c4 x
b4 + c5 x

b5 − c6 xb
6

= 0

with x ∈ R3
> and bi ∈ R3, i = 1, . . . , 6

“normalize”:

c1 x1 + c2 x2 − 1 = 0,

c4 x3 + c5 x
b1
1 x

b2
2 x

b3
3 − 1 = 0

A
(
c ◦ xB

)
= 0 with

A =

(
1 1 −1 0 0 0
0 0 0 1 1 −1

)
, B =

1 0 0 0 b1 0
0 1 0 0 b2 0
0 0 0 1 b3 0

 , c =


c1
c2
1
c4
c5
1


m = 6 monomials in n = 3 variables
and ` = 2 classes
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Geometric objects - from coefficients

(non-empty) coefficient cone:

C = kerA ∩ Rm>

` classes if
C = C1 × · · · × C`

in the example,

C = C1 × C2 with Ci = C? := ker
(
1 1 −1

)
∩ R3

>

coefficient set (polytope):
P = C ∩∆

with direct product ∆ = ∆1 × · · · ×∆` of (standard) simplices

in the example,

∆ = ∆1 ×∆2 with ∆i = ∆? := {x ∈ R3
≥ |
∑

k xk = 2}

P = P1 × P2 with Pi = P? := C? ∩∆?
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Geometric objects - from coefficients

A =
(
1 1 −1

)

y1

y2

y3

C = kerA ∩ R3
>

P = C ∩∆
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Geometric objects - from exponents

B =

(
B
J

)
with “Cayley” matrix J ∈ {0, 1}`×m indicating classes

in the example,

B =


1 0 0 0 b1 0
0 1 0 0 b2 0
0 0 0 1 b3 0
1 1 1 0 0 0
0 0 0 1 1 1


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Main result (simplified)

Theorem: polynomial ∼ binomial

The solution set

Zc = {x ∈ Rn> | A (c ◦ xB) = 0},

is in one-to-one correspondence with the solution set on the coefficient
polytope,

Yc = {y ∈ P | yz = cz for all z ∈ D},

where P is the coefficient polytope, and D is the dependency subspace.

Every parametrized system of polynomial equations (for x ∈ Rn>)
is given by binomial equations (for y ∈ P ⊂ Rm> ).

With H ∈ Rm×d such that D = imH:

yH = cH

d binomial equations for y ∈ P



Main result (simplified)

Theorem: polynomial ∼ binomial

The solution set

Zc = {x ∈ Rn> | A (c ◦ xB) = 0},

is in one-to-one correspondence with the solution set on the coefficient
polytope,

Yc = {y ∈ P | yz = cz for all z ∈ D},

where P is the coefficient polytope, and D is the dependency subspace.

Every parametrized system of polynomial equations (for x ∈ Rn>)
is given by binomial equations (for y ∈ P ⊂ Rm> ).

With H ∈ Rm×d such that D = imH:

yH = cH

d binomial equations for y ∈ P



Main result (simplified)

Theorem: polynomial ∼ binomial

The solution set

Zc = {x ∈ Rn> | A (c ◦ xB) = 0},

is in one-to-one correspondence with the solution set on the coefficient
polytope,

Yc = {y ∈ P | yz = cz for all z ∈ D},

where P is the coefficient polytope, and D is the dependency subspace.

Every parametrized system of polynomial equations (for x ∈ Rn>)
is given by binomial equations (for y ∈ P ⊂ Rm> ).

With H ∈ Rm×d such that D = imH:

yH = cH

d binomial equations for y ∈ P



Comments

general result

classification of polynomial systems via dependency d (and dimP )

if d = 0 (the “very few”-nomial case), then Yc = P .

solution set Yc depends on m positive parameters c
via d monomials cH .

result is based on linear algebra and convex/polyhedral geometry,
but not on real algebraic geometry

solution set Yc can be studied with methods from analysis.

sign-characteristic functions,
Brouwer degree, Hadamard’s theorem,
Descartes’ rule of signs for functions, Wronskians, ...

Main result (full):
solution set Zc can be obtained from Yc via exponention
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Example - binomial equation

y =

(
y1

y2

)
∈ P = P1×P2 : yi = λi

1
0
1

+(1−λi)

0
1
1

 =

 λi
1− λi

1

 , λ1, λ2 ∈ (0, 1)

B =

(
B
J

)
=


1 0 0 0 b1 0
0 1 0 0 b2 0
0 0 0 1 b3 0
1 1 1 0 0 0
0 0 0 1 1 1

 , D = kerB = im z with z =


b1
b2

−(b1 + b2)
b3
−1

1− b3



d = dimD = 1:

yz = cz, i.e., λb11 (1− λ1)
b2λb32 (1− λ2)

−1 = cb11 c
b2
2 c

b3
3 c
−1
4 =: c∗

sign-characteristic functions:

sα,β : (0, 1)→ R>,

λ 7→ λα(1− λ)β

separation of variables:
sb1,b2(λ1) = c∗s−b3,1(λ2)
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Example - solutions in λ1, λ2

b1 = 1, b2 = 2 and b3 = 2:

0.5 1
λ1

0.5

1
λ2

b1 = 1, b2 = 2 and b3 = −2:

0.5 1
λ1

0.5

1
λ2

c*<1

0.5 1
λ1

0.5

1
λ2

c*=1

0.5 1
λ1

0.5

1
λ2

c*>1

b1 = −1, b2 = −2 and b3 = −2:
ccrit = ( 27

4
)2

0.5 1
λ1

0.5

1
λ2

c*<ccrit

0.5 1
λ1

0.5

1
λ2

c*=ccrit
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More examples

M & Regensburger (2023a). Parametrized systems of polynomial inequalitites with real
exponents via linear algebra and convex geometry, arXiv:2306.13916 [math.AG]

d = 0: two overlapping trinomials in four variables (m = 4, n = 4, ` = 1)
X→ Xp, Xp + Y � X + Yp, Yp → Y

d = 1: one trinomial in one variable (m = 3, n = 1, ` = 1)

d = 2: one trinomial equation and one tetranomial inequality (m = 7, n = 5, ` = 2)
X1 � X2, 2X1 + X2 → 3X1

M & Regensburger (2023b). Parametrized systems of polynomial equations with real
exponents: applications to fewnomials, arXiv:2304.05273 [math.AG]

d = 1: two non-overlapping trinomials in three variables (m = 6, n = 3, ` = 2)

d = 1: two overlapping trinomials in two variables (m = 4, n = 2, ` = 1)
cf. Bihan & Dickenstein & . . . (2021, 2017, 2015, 2007)

d ≥ 2: one trinomial and one t-nomial in two variables (m = 3 + t, n = 2, ` = 2)
for t = 3 (two trinomials), cf. Haas (2002)
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Geometric objects - from exponents (continued)

monomial difference matrix:

M = B I =
(
B1Im1 . . . B`Im`

)
∈ Rn×(m−`)

with “incidence” matrix

I =

Im1 0
. . .

0 Im`

 ∈ Rm×(m−`), where

Im =

(
Idm−1
−1Tm−1

)
∈ Rm×(m−1), i.e., I2 =

(
1
−1

)
, I3 =

 1 0
0 1
−1 −1

 , . . .

monomial difference subspace:

L = imM

Fact

d = m− `− dimL
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Main result (full)

Theorem

The solution set Zc = {x ∈ Rn> | A (c ◦ xB) = 0} can be written as

Zc = {(y ◦ c−1)E | y ∈ Yc} ◦ eL
⊥

with
Yc = {y ∈ P | yz = cz for all z ∈ D}.

P ... coefficient set
D ... monomial dependency subspace
L ... monomial difference subspace

E = I M∗ ... exponentiation matrix
I ... (incidence) matrix
M∗ ... generalized inverse of M = B I



Open problems and applications

A (c ◦ xB) = 0:

– When does there exist a solution? (for all parameters)

– When is the solution unique? (on the coefficient polytope)

Fewnomial systems:

– What is an (optimal) upper bound
for the number of (components of) solutions?

– How can Descartes’ rule of signs be extended
to multivariate polynomial equations?

Reaction networks:

– When do (positive) equilibria have a monomial parametrization?
(depending rationally on the rate constants)

– How can results such as the deficiency one theorem be extended?
(from δ = 1 to d = 1, and from MAK to GMAK)
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Thanks for your attention!


