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Constraint-based kinetic models

The problem: allocate enzymes to maximize a metabolic pathway flux
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depending on enzyme levels εl and metabolite concentrations ci:
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Constraint-based kinetic models

Kinetic metabolic models and flux balance models
Kinetic metabolic models describe the metabolic reaction rates vl
depending on enzyme levels εl and metabolite concentrations ci:

vl = εl fl(c)

Metabolite dynamics (for “internal” metabolites i) depends on the rates vl
and on stoichiometric coefficients nil:

dci
dt

=
∑
l

nil vl(c)

Flux analysis models ignore dynamics and determine steady fluxes Jl = vl satisfying

0 =
∑
l

nil Jl
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Constraint-based kinetic models

What is the enzyme cost of a metabolic flux distribution?
Given a stationary flux distribution Jl and remembering the rate laws

vl = εl fl(c),

by solving for the enzyme levels εl we obtain the overall enzyme demand

εtot(J) =
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Constraint-based kinetic models

What is the enzyme cost of a metabolic flux distribution?
Given a stationary flux distribution Jl and remembering the rate laws

vl = εl fl(c),

by solving for the enzyme levels εl we obtain the overall enzyme demand

εtot(J) =
∑
l

εl =
∑
l

Jl
fl(c)

For fixed concentrations ci, the enzyme efficiencies kappl = fl(c) are constant and

εtot(J) =
∑
l

Jl
kappl

The demand scales linearly with the fluxes (and hence, with the system’s “output flux”)



Optimal enzyme profiles in metabolic pathways: principles and simple solutions

Constraint-based kinetic models

With “trivial” kinetics: enzyme efficiencies are inversely additive
We assume a pathway with stationary flux J and constant efficiencies, vl = εl k

app
l .

Setting vi = J and solving for εl, we obtain the enzyme demand

εtot =
∑
l

εl =
∑
l

1

kappl

· J

So we can write the pathway flux as

J = kapptot εtot

with the effective pathway efficiency

kapptot =
1∑
l

1
kappl

The inverse kapp are times, and additive like resistances in a series of resistors.
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Constraint-based kinetic models

Reversible enzyme kinetics based on Haldane

For a reversible enzyme catalyzed reaction1: S
E−−⇀↽−− P

v = ε ·
kcat+ s/KS − kcat− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
kapp

1s, p, and ε are the concentrations of S, P , and E
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Constraint-based kinetic models

Reversible enzyme kinetics based on Haldane

For a reversible enzyme catalyzed reaction1: S
E−−⇀↽−− P

v = ε ·
kcat+ s/KS − kcat− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
kapp

Haldane further showed that the equilibrium constant satisfies the following relationship:

Keq =
kcat+

kcat−

KP

KS

1s, p, and ε are the concentrations of S, P , and E
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Constraint-based kinetic models

Reversible enzyme kinetics based on Haldane

For a reversible enzyme catalyzed reaction1: S
E−−⇀↽−− P

v = ε ·
kcat+ s/KS − kcat− p/KP

1 + s/KS + p/KP︸ ︷︷ ︸
kapp

The Haldane rate law can be rewritten (Noor et al. [2013]) as2:

v = ε · kcat+︸ ︷︷ ︸
Vmax

·
(
1− e

∆rG
′

RT

)
︸ ︷︷ ︸

ηfor

·
s
KS

1 + p
KP

+ s
KS︸ ︷︷ ︸

ηkin

1s, p, and ε are the concentrations of S, P , and E
2where ∆rG

′ ≡ ∆rG
′◦ +R T ln(p/s) and ∆rG

′◦ = −R T ln(Keq)
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Enzyme Cost Minimization: minimize the enzyme demand of a given flux!
Given a pathway with fixed flux and with enzymatic reactions with Haldane rate laws,
look for metabolite and enzyme levels that minimize the sum of all enzyme demands.
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Enzyme cost minimization (ECM)

Enzyme Cost Minimization: minimize the enzyme demand of a given flux!
Given a pathway with fixed flux and with enzymatic reactions with Haldane rate laws,
look for metabolite and enzyme levels that minimize the sum of all enzyme demands.

Enzyme demand in one reaction

ε = J · 1

kcat+

·
(
1− e

∆rG
′

RT

)−1

︸ ︷︷ ︸
1/ηfor

·
1 + p

KP
+ s

KS
s
KS︸ ︷︷ ︸

1/ηkin

The pathway cost per flux (εtot/J) is the sum of demands for all reactions:
a convex function of metabolite log-concentrations (Liebermeister and Noor [2015]).
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Enzyme cost minimization (ECM)

Example: the enzyme demand in a 3-step pathway
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Enzyme cost minimization (ECM)

Can we find analytical solutions to ECM?
Analytical solutions1 are useful because they:

1 Ensure solution optimality
2 Help find hidden relationships
3 Inspire design principles
4 Suggest mechanisms

1Noor and Liebermeister [2024]
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Enzyme cost minimization (ECM)

Can we find analytical solutions to ECM?
Analytical solutions1 are useful because they:

1 Ensure solution optimality
2 Help find hidden relationships
3 Inspire design principles
4 Suggest mechanisms

Problem

Kinetic models, where reactions have multi-substrate or Haldane rate laws, do not have
known analytical solutions.

Solution: focus only on unbranched pathways with simplified kinetics.

1Noor and Liebermeister [2024]
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Enzyme cost minimization (ECM)

We come back to our full optimality problem
Instead of Enzyme Cost Minization (minimizing enzyme at given fluxes):
Maximize the pathway flux with a bound on enzyme (and possible on metabolite) levels!
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Solving ECM analytically

The factorized Haldane rate law and some simplifications

Haldane
———————–

v = εkcat (1− e∆rG′/RT )︸ ︷︷ ︸
ηfor

s
KS

1 + s
KS

+ p
KP︸ ︷︷ ︸

ηkin

Michaelis-Menten
———————–

v = εkcat
s

s+KS︸ ︷︷ ︸
ηkin

Thermodynamic
———————–
v = εkcat (1− e∆rG′/RT )︸ ︷︷ ︸

ηfor

Mass-action
———————–

v = εkcat (1− e∆rG′/RT )︸ ︷︷ ︸
ηfor

s

KS︸︷︷︸
ηkin

p � KP, ηfor = 1 ηkin = 1
s � KS, p � KP
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Solving ECM analytically

The “mass-action” approximation
Haldane:

v = ε ·
kcat+ s/KS − kcat− p/KP

1 + s/KS + p/KP

If we assume:
s � KS, p � KP

Therefore:

v = ε ·

kcat+ /KS︸ ︷︷ ︸
k+

· s − kcat− /KP︸ ︷︷ ︸
k−

· p
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Solving ECM analytically

Unbranched pathway with “mass-action” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

∀i J = εi · (ki si−1 − k−i si)
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Solving ECM analytically

Unbranched pathway with “mass-action” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

∀i J = εi · (ki si−1 − k−i si)

Optimized flux solution2

J∗ = εtot ·
s0 − sn/K

eq(∑
i

√
γi
)2

where γi ≡
∏n

j=i+1 kj∏n
j=i k−j

and Keq ≡
∏n

j=1 kj∏n
j=1 k−j

2Waley [1964], Burns [1971]
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Solving ECM analytically

Unbranched pathway with “thermodynamic” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

J = εi k
cat
i

(
1− e∆rG′

i/RT
)
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Solving ECM analytically

Unbranched pathway with “thermodynamic” kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

J = εi k
cat
i

(
1− e∆rG′

i/RT
)

Optimized flux (approximated) solution3

J∗ ≈ εtot ·
1

a

(
1− exp

(
a

b

∆rG
′
tot

RT

))

where a ≡
∑

j
1

kcatj
, b ≡

∑
j

1√
kcatj

, and ∆rG
′
tot ≡

∑
j ∆rG

′
j

3Noor and Liebermeister [2024]
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Solving ECM analytically

Unbranched pathway with Michaelis-Menten kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

∀i J = εi · kcati

si−1

si−1 +Ki



Optimal enzyme profiles in metabolic pathways: principles and simple solutions

Solving ECM analytically

Unbranched pathway with Michaelis-Menten kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

∀i J = εi · kcati

si−1

si−1 +Ki

Optimizing J would require infinite metabolite concentrations!
Therefore we add a total metabolite constraint:

∑
i si ≤ stot



Optimal enzyme profiles in metabolic pathways: principles and simple solutions

Solving ECM analytically

Unbranched pathway with Michaelis-Menten kinetics

S0
v1−−⇀↽−− S1

v2−−⇀↽−− . . .
vn−−⇀↽−− Sn

∀i J = εi · kcati

si−1

si−1 +Ki

Optimized flux solution4

J∗ = εtot ·
1∑

j 1/k
cat
j +

(∑
j

√
Kj/kcatj

)2/
stot

4Noor and Liebermeister [2024]
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Growing cell model

An application of simple pathway models: a model of a growing cell

fixed
(other)

dilution (μ)

sugar phosphosugar precursors biomass

ribosomes
εr

metabolic
enzymes

εm

transporters
εt

transporters metabolic
enzymes

ribosomes

Ssugar S1 S2 S3

εt εm εr

Monod curve for E. coli on glucose (Shehata and
Marr [1971]).
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Growing cell model

An application of simple pathway models: a model of a growing cell

fixed
(other)

dilution (μ)

sugar phosphosugar precursors biomass

ribosomes
εr

metabolic
enzymes

εm

transporters
εt

transporters metabolic
enzymes

ribosomes

Ssugar S1 S2 S3

εt εm εr

Assume:
Coarse-graining: 3 enzymatic processes

Ssugar
εt−−⇀↽−− S1

εm−−⇀↽−− S2
εr−−⇀↽−− S3

µ−−→
Controlled parameter: ssugar

Constraint: εt + εm + εr = εtot

Optimization: maximize growth rate (µ)
Rate laws: mass-action, thermodynamic, or
Michaelis-Mentena

Not included: metabolite dilution by growth
aExtra constraint: stot ≥ s1 + s2 + s3
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Growing cell model

Cell model example (1): mass-action kinetics

µ = εtot ·
s0 − sn/K

eq(∑
i

√
γi
)2

where

γt ≡
KM;t

kcat
t

· Keq
r · Keq

m · Keq
t

γm ≡
KM;m

kcat
m

· Keq
r · Keq

m

γr ≡
KM;r

kcat
r

· Keq
r
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Growing cell model

Cell model example (1): mass-action kinetics

µ = εtot ·
s0 − sn/K

eq(∑
i

√
γi
)2

where

γt ≡
KM;t

kcat
t

· Keq
r · Keq

m · Keq
t

γm ≡
KM;m

kcat
m

· Keq
r · Keq

m

γr ≡
KM;r

kcat
r

· Keq
r

Example “Monod” curve (γt = γm = γr = 1)
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Growing cell model

Cell model example (2): “thermodynamic” kinetics

µ ≈ εtot ·
1

a

(
1− e

−a
b
·ln

(
ssugar

Keq

s3

))
where

a ≡
1

kcat
t

+
1

kcat
m

+
1

kcat
r

b ≡
1√
kcat
t

+
1√
kcat
m

+
1√
kcat
r

K
eq ≡ K

eq
r · Keq

m · Keq
t
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Growing cell model

Cell model example (2): “thermodynamic” kinetics

µ ≈ εtot ·
1

a

(
1− e

−a
b
·ln

(
ssugar

Keq

s3

))
where

a ≡
1

kcat
t

+
1

kcat
m

+
1

kcat
r

b ≡
1√
kcat
t

+
1√
kcat
m

+
1√
kcat
r

K
eq ≡ K

eq
r · Keq

m · Keq
t

Example “Monod” curve (a = b = 1 = s3 = Keq = 1)
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Growing cell model

Cell model example (3): Michaelis-Menten kinetics

µ = µ
max ·

ssugar

ssugar + KMonod

µ
max ≡

εtot

1
kcat
t

+ 1
kcat
m

+ 1
kcat
r

+

(√
KM;m

kcat
m

+

√
KM;r

kcat
r

)2
1

stot

KMonod ≡
KM;t/k

cat
t

1
kcat
t

+ 1
kcat
m

+ 1
kcat
r

+

(√
KM;m

kcat
m

+

√
KM;r

kcat
r

)2
1

stot

Example Monod curve (µmax = KMonod = 1)
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µ
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Conclusions

Summary of three cell models

Mass-action
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µ = a · ssugar ·
(
1 −

s3

ssugar Keq

)

Thermodynamic

0 2 4 6 8 10
0

0.5

1
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µ

µ
µmax
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µ ≈ µmax ·

1 −
(

s3

ssugar Keq

)b


Michaelis-Menten

0 2 4 6 8 10
0

0.5

1

ssugar

µ

µ
µmax

KMonod

µ = µmax ·
ssugar

ssugar + KMonod
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Enzyme Cost Minimization is a convex problem

For some special cases, we provide analytical solutions
We can use these results to build corse-grained cell models
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Activities around Economic Principles in Cell Biology

Online seminar Economic principles in cell physiology
1st Thursday of each month
“Young Scholars” Group
Monthly seminar for grad students and young researchers
Book project “Economic principles in cell biology”:
Open, non-commercial textbook written by the community
Summer school at Learning Planet Institute Paris
July 8-11, 2024 register for free online participation

For more information, see https://principlescellphysiology.org
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